1
|
Sharma A, Dubey PK, Kumar P, Tiwari KN, Tripathi A. Identification and molecular characterization of genes modulating progression of an oocyte from M-I to M-II in rat ovary. Am J Reprod Immunol 2024; 91:e13825. [PMID: 38389407 DOI: 10.1111/aji.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND To achieve oocyte competence for successful fertilization, bidirectional communication between oocyte and granulosa cells is crucial. The acquisition of meiotic competency in oocyte is facilitated by various regulatory genes however, expression pattern of these genes is not well documented during meiotic transition from Metaphase-I to Metaphase-II stage. Therefore, the present research analyzed the expression pattern of regulatory genes that are involved in the transition from M-I to M-II stages in rat oocyte. METHODS The analysis of the data was conducted by applying an array of bioinformatic tools. The investigation of gene group interactions was carried out by employing the STRING database, which relies on co-expression information. The gene ontology (GO) analysis was performed utilizing the comparative GO database. Functional annotation for GO and pathway enrichment analysis were performed for genes involved in networking. The GO obtained through computational simulations was subsequently validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS The findings of our study suggest that there is a distinct gene expression pattern in both the oocyte and granulosa cells. This pattern indicates that oocyte-secreted factors, such as BMP15 and GDF9, play a crucial role in regulating the progression of the meiotic cell cycle from the M-I to M-II stages. We have also examined the level of mRNA expression of genes including CYP11A1, CYP19A1, and STAR, which are crucial for the steroidogenesis. CONCLUSIONS It is fascinating to observe that the oscillatory pattern of specific key genes may hold significance in the process of in vitro oocyte maturation, specifically during the transition from the M-I to M-II stage. It might be useful for determining biomarker genes and potential pathways that play a role in attaining oocyte competency, thereby aiding in the assessment of oocyte quality for the purpose of achieving successful fertilization.
Collapse
Affiliation(s)
- Alka Sharma
- Zoology Section, MMV, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anima Tripathi
- Zoology Section, MMV, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
De Los Reyes M, Palomino J, Villagra A, Ramirez G, Peralta OA, Parraguez VH, Aspee K. Effect of progesterone on in vitro meiotic maturation of canine oocytes associated with Cx37 and Cx43 gene expression. Theriogenology 2023; 204:50-57. [PMID: 37068395 DOI: 10.1016/j.theriogenology.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Progesterone (P4) concentrations in canines are exceptionally high in the periovulatory period. However, the mechanisms by which P4 modulates final oocyte development in dogs remain to be characterized. The aim of this study was to evaluate the effect of P4 on meiotic development related to the gene expression of connexin 37 (Cx37) and connexin 43 (Cx43) in the canine cumlus oocyte complexes (COCs). COCs were isolated from 120 canine ovaries after a routine ovariohysterectomy. In each experiment, groups of COCs retrieved from the antral follicles were subjected to in vitro maturation (IVM) for 72 h without (control) or with P4 (50 μg/mL and 100 μg/mL) or the P4 receptor antagonist, aglepristone (RU534 at 1 μM and 10 μM). Some of the COCs recovered (from each group) after 72 h of IVM were subjected to meiotic evaluation; the remaining COCs, and those not subjected to IVM, were used to analyze the gene expression of Cx37 and Cx43 by qPCR. The results were evaluated using ANOVA. The addition of P4 increased (P < 0.05) the meiotic development compared to that in the control or aglepristone groups. The highest (P < 0.05) percentage of oocytes in the MII stage was observed upon P4 supplementation. In contrast, the highest percentage (P < 0.05) of oocytes arrested in the GV stage and the lowest (P < 0.05) percentages in the MII stage were observed for COCs cultured with aglepristone. Although a significant decrease in the mRNA levels of both connexins was observed after culturing, no effect on Cx37 and Cx43 gene expression was observed when exogenous P4 was added compared to those of the control group. However, COCs cultured with aglepristone exhibited higher (P < 0.05) expression of Cx37 and Cx43 than COCs in the control IVM-group, regardless of the concentration. In conclusion, our results suggest that a high dosage of P4 during IVM enhances the nuclear maturation of canine oocytes without altering the gene expression levels of Cx37 and Cx43. However, the increase in their expression upon treatment with a P4 antagonist indicates an in vivo role for this hormone in the endogenous modulation of both Cx37 and Cx43.
Collapse
Affiliation(s)
- Monica De Los Reyes
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| | - Jaime Palomino
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile; College of Veterinary Medicine, Bernardo O'Higgins University, Santiago, Chile
| | - Allison Villagra
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - George Ramirez
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Oscar A Peralta
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Victor H Parraguez
- Laboratory of Animal Physiology, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Karla Aspee
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Taghizabet N, Bahmanpour S, Zarei-fard N, Mohseni G, Aliakbari F, Dehghani F. Effect of endometrial cell-conditioned medium and platelet-rich plasma on the developmental competence of mouse preantral follicles: An in vitro study. Clin Exp Reprod Med 2022; 49:175-184. [PMID: 36097733 PMCID: PMC9468696 DOI: 10.5653/cerm.2022.05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The aim of this study was to evaluate the impacts of platelet-rich plasma (PRP) and conditioned medium (CM) derived from endometrial stromal cells on mouse preantral follicle culture in a two-dimensional system to produce competent mature oocytes for fertilization. Methods In total, 240 preantral follicles were isolated from female mouse ovarian tissue and divided into four groups. The preantral follicles were isolated three times for each group and then cultured, respectively, in the presence of alpha minimum essential medium (control), PRP, CM, and PRP+CM. The in vitro growth, in vitro maturation, and cleavage percentage of the preantral follicles were investigated. Immunocytochemistry (IHC) was also conducted to monitor the meiotic progression of the oocytes. Additionally, the mRNA expression levels of the two folliculogenesis-related genes (Gdf9 and Bmp15) and two apoptosis-related genes (Bcl2 and Bax) were investigated using real-time polymerase chain reaction. Results In the PRP, CM, and PRP+CM groups, the preantral follicle maturation (evaluated by identifying polar bodies) were greater than the control group. The cleavage rate in the CM, and PRP+CM groups were also greater than the control group. IHC analysis demonstrated that in each treatment group, meiotic spindle was normal. In the PRP+CM group, the gene expression levels of Bmp15, Gdf9, and Bcl2 were greater than in the other groups. The Bax gene was more strongly expressed in the PRP and control groups than in the other groups. Conclusion Overall, the present study suggests that the combination of CM and PRP can effectively increase the growth and cleavage rate of mouse preantral follicles in vitro.
Collapse
Affiliation(s)
- Neda Taghizabet
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei-fard
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Mohseni
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Aliakbari
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding Author: Farzaneh Dehghani Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences and Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Emam Hossein Ave, Zand St, Shiraz 7134853185, Iran Tel: +91-7717-0758, E-mail:
| |
Collapse
|
4
|
Maside C, Sánchez-Ajofrín I, Medina-Chávez D, Alves B, Garde JJ, Soler AJ. Oocyte Morphometric Assessment and Gene Expression Profiling of Oocytes and Cumulus Cells as Biomarkers of Oocyte Competence in Sheep. Animals (Basel) 2021; 11:ani11102818. [PMID: 34679840 PMCID: PMC8532595 DOI: 10.3390/ani11102818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Oocyte quality is crucial for subsequent embryo development and so it is a major challenge in assisted reproductive technologies. The aim of the present work was to evaluate the morphometric parameters of oocytes (experiment 1) and the relative gene expression of oocytes and cumulus cells (CCs) (experiment 2) as biomarkers of oocyte quality after individually culturing them (one oocyte or embryo/drop). In experiment 1, individually matured oocytes were measured and classified into small, intermediate, and large oocytes after a cluster analysis, based on total diameter (with zona pellucida, ZP), oocyte diameter (without ZP), and ZP thickness. These oocytes were individually fertilized in vitro and cultured. The embryo development was evaluated up to the blastocyst stage. According to the total diameter, oocyte diameter, and ZP thickness, the blastocyst rate decreased in the small oocytes group (3.1 ± 3.1, 14.1 ± 9.4, and 26.7 ± 3.9, respectively) compared to the intermediate (29.4 ± 5.2, 30.5 ± 10.1, and 28.6 ± 9.6, respectively) and large oocytes groups (54.2 ± 13.5, 44.4 ± 3.9, and 67.6 ± 12.4, respectively). In addition, the probability of reaching the blastocyst stage was positively related to the total diameter (p < 0.001), oocyte diameter (p < 0.05), and ZP thickness (p < 0.001). Furthermore, the relative gene expression of BAX, BCL2, GDF9, and GJA1 was lower in oocytes classified as large. In experiment 2, the mRNA transcript relative abundance pattern of genes in CCs was evaluated according to oocyte total diameter and developmental stage reached. CCs from oocytes classified as large and oocytes capable of developing to the blastocyst stage had a lower relative expression of BAX, STAR, and PTGS2, while a higher expression of HAS2 and SDC2 transcript was observed for those oocytes. In conclusion, oocyte morphometric parameters and gene expression analysis in oocytes and CCs provide methods for the identification of the most competent oocytes for assisted reproductive technologies in sheep.
Collapse
Affiliation(s)
- Carolina Maside
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Correspondence:
| | - Irene Sánchez-Ajofrín
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | - Daniela Medina-Chávez
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | | | - José Julián Garde
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| |
Collapse
|
5
|
Colombo M, Alkali IM, Prochowska S, Luvoni GC. Fighting Like Cats and Dogs: Challenges in Domestic Carnivore Oocyte Development and Promises of Innovative Culture Systems. Animals (Basel) 2021; 11:2135. [PMID: 34359262 PMCID: PMC8300176 DOI: 10.3390/ani11072135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro embryo production in cats and dogs still presents some challenges, and it needs to be optimized to transfer efficient protocols to related wild, endangered species. While the chemical composition of culture media has been the focus of several studies, the importance of culture substrates for oocyte and embryo culture has often been neglected. Traditional in vitro systems, i.e., two-dimensional cultures, do not resemble the physiological environments where cells develop, and they may cause morphological and functional alterations to oocytes and embryos. More modern three-dimensional and microfluidic culture system better mimic the structure and the stimuli found in in vivo conditions, and they could better support the development of oocytes and embryos in vitro, as well as the maintenance of more physiological behaviors. This review describes the different culture systems tested for domestic carnivore reproductive cells along the years, and it summarizes their effects on cultured cells with the purpose of analyzing innovative options to improve in vitro embryo production outcomes.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Isa Mohammed Alkali
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366 Wrocław, Poland;
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare “Carlo Cantoni”, Università degli Studi di Milano, 26900 Lodi, Italy; (I.M.A.); (G.C.L.)
| |
Collapse
|
6
|
Pyometra does not affect some molecular quality-related parameters of canine oocytes. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Cystic endometrial hyperplasia-pyometra complex (CEH/P) significantly perturbs the reproductive performance of affected bitches and ovariohysterectomy (OHE) is a commonly applied treatment. Thus the only way to take advantage of the genetic potential of valuable females is application of assisted reproductive techniques (ART) mainly in vitro embryo production (IVP) or in some exceptional cases animal cloning by somatic cell nuclear transfer (SCNT). The aim of our study was to examine a potential effect of the CEH/P status on the quality of oocytes from females subjected to OHE. In total, 828 immature oocytes collected from ovaries of 33 bitches (21 control, 12 CEH/P) were subjected to genetic analyses (mRNA expression of two maternal-effect genes: GDF-9, OCT4 and mitochondrial DNA (mtDNA) content). Oocytes of CEH/P females were characterized by a higher mtDNA content (471 696) than gametes of their healthy counterparts (368 175; P<0.005). Transcripts for the two genes were detected in all samples and the mRNA level was not affected by the CEH/P status. In conclusion, the CEH/P complex does not exert a negative effect on oocyte quality reflected by the two parameters examined in this study.
Collapse
|
7
|
De Los Reyes M, Palomino J, Araujo A, Flores J, Ramirez G, Parraguez VH, Aspee K. Cyclooxygenase 2 messenger RNA levels in canine follicular cells: interrelationship with GDF-9, BMP-15, and progesterone. Domest Anim Endocrinol 2021; 74:106529. [PMID: 32890884 DOI: 10.1016/j.domaniend.2020.106529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase 2 (COX-2) encoded by the Cox-2 gene within the periovulatory follicles is a critical mediator of oocyte development. Growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) participate in the modulation of certain target genes in the ovary, possibly influencing the Cox-2 gene expression. However, this relationship has not been characterized in canines. This study aimed to examine the possible relationships among BMP-15, GDF-9, progesterone, and Cox-2 gene expression in granulosa-cumulus cells in dogs. Granulosa cells from antral follicles and their corresponding cumulus-oocyte complexes and follicular fluid (FF) were separately obtained from 56 ovaries collected from adult bitches at estrus (n = 15) and proestrus (n = 13) after ovariohysterectomy. Total RNA extraction was performed in follicular cells, and Cox-2 gene expression was assessed by quantitative PCR analysis. Progesterone, BMP-15, and GDF-9 were determined in the FF samples using ELISA assays. Cumulus-oocyte complexes were subjected to in vitro maturation (IVM) with or without (control) recombinant GDF-9 and BMP-15. After 72 h of culture, Cox-2 transcript analyses were performed in cumulus cells via quantitative PCR. Data were evaluated by ANOVA. An increase (P < 0.05) in Cox-2 messenger RNA levels was observed in follicular cells from follicles at estrus with respect to those at proestrus. However, the levels of BMP-15 and GDF-9 in FF decreased (P < 0.05), whereas progesterone increased (P < 0.05) from the proestrus phase to the estrus phase. The expression of Cox-2 gene in cumulus cells was 4-fold greater (P < 0.01) than that in the control when both growth factors were added to the IVM culture. In conclusion, although BMP-15 together with GDF-9 appears to upregulate the levels of Cox-2 transcripts during IVM, the inverse relationship of these paracrine factors with Cox-2 gene expression and the positive correlation of progesterone with Cox-2 transcripts suggest that the high progesterone levels could be more relevant in the local mechanisms regulating the Cox-2 gene expression.
Collapse
Affiliation(s)
- M De Los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile.
| | - J Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - A Araujo
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - J Flores
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - G Ramirez
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - V H Parraguez
- Laboratory of Animal Physiology, Department of Biological Sciences, Faculty of Veterinary Sciences, University of Chile, Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - K Aspee
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
8
|
PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology 2020; 157:432-439. [PMID: 32877843 DOI: 10.1016/j.theriogenology.2020.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
The phosphatidylinositol -3- kinase (PI3K) signaling pathway is critical for the cell proliferation, apoptosis, metabolism, DNA repair and protein synthesis. Significant effort has focused on elucidating the relationship between PI3K signaling pathway and other nuclear signal transducers; However, little is known about the connection between PI3K signaling pathway and porcine oocyte meiotic maturation. In this study, we investigated the function of PI3K signaling pathway in porcine oocytes. PI3K signaling pathway was important during oocyte maturation. Furthermore, the PI3K signaling pathway inhibitor LY-294002 blocked porcine oocyte maturation, reducing the percentage of oocytes that first polar body (PBI) extrusion. LY-294002 also decreased the expression of oocyte proliferation-related gene PCNA and reduced the mRNA and protein levels of PI3K. What's more, LY-294002 also decreased other maturation-related genes that are predominantly expressed duringporcine oocyte maturation, including bone morphogenetic protein 15 (BPM15), growth differentiation factor 9 (GDF9), cell division cycle protein 2 (CDC2), phosphatase and tensin homolog (PTEN), CyclinB1, MOS and Akt. LY-294002 treatment decreased the developmental potential of blastocysts following parthenogenetic activation, increased the level of cell apoptosis and reduced the level of cell-cycle. This study revealed that inhibiting the PI3K signaling pathway could reduce in vitro maturation and developmental competence of porcine oocytes, probably by reducing cell cycle arrest and proliferation, promoting the oocyte apoptosis, and altering the expression of other maternal genes.
Collapse
|
9
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
10
|
Ramirez G, Palomino J, Aspee K, De los Reyes M. GDF-9 and BMP-15 mRNA Levels in Canine Cumulus Cells Related to Cumulus Expansion and the Maturation Process. Animals (Basel) 2020; 10:ani10030462. [PMID: 32164341 PMCID: PMC7143337 DOI: 10.3390/ani10030462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The knowledge of physiological events associated with canine reproduction involving oocyte developmental potential is essential to increase the success of reproductive biotechnologies in this species. In mammals, the oocytes are closely surrounded by a group of cells known as the cumulus cells. Although it is not well-known how these cells interact with the oocyte to promote maturation, they may provide important answers concerning oocyte development. The competence to undergo expansion is a unique characteristic of cumulus cells which is critical for normal oocyte maturation, however, the complete expansion of these cells takes longer in canines, which has been associated with the lengthy maturation process of the oocyte. Growth Differentiation Factor 9 (GDF-9) and Bone Morphogenetic Protein 15 (BMP-15) are described as relevant players in the oocyte–cumulus cells’ regulatory mechanisms. Cumulus cells express many important genes from a very early stage, therefore, we proposed to study the gene expression of GDF-9 and BMP-15 in canine cumulus cells in relation to cumulus expansion and the maturation process. We demonstrate, for the first time, that these genes are differentially expressed in canine cumulus cells throughout the estrous cycle and that this expression is related to cumulus expansion and maturity status, suggesting specific regulation. Abstract The competence to undergo expansion is a characteristic of cumulus cells (CCs). The aim was to investigate the expression of GDF-9 and BMP-15 mRNA in canine cumulus cells in relation to cumulus expansion and meiotic development over the estrous cycle. CCs were recovered from nonmatured and in vitro-matured (IVM) dog cumulus oocyte complexes (COCs), which were obtained from antral follicles at different phases of the estrous cycle. Quantitative real-time polymerase chain reaction (q-PCR) was used to evaluate the relative abundance of GDF-9 and BMP-15 transcripts from the CCs with or without signs of expansion. The results were evaluated by ANOVA and logistic regression. The maturity of the oocyte and the expansion process affected the mRNA levels in CCs. There were differences (p < 0.05) in GDF-9 and BMP-15 gene expression in CCs isolated from nonmatured COCs when comparing the reproductive phases. Lower mRNA levels (p < 0.05) were observed in anestrus and proestrus in comparison to those in estrus and diestrus. In contrast, when comparing GDF-9 mRNA levels in IVM COCs, no differences were found among the phases of the estrous cycle in expanded and nonexpanded CCs (p < 0.05). However, the highest (p < 0.05) BMP-15 gene expression in CCs that did not undergo expansion was exhibited in anestrus and the lowest (p < 0.05) expression was observed in estrus in expanded CCs. Although the stage of the estrous cycle did not affect the second metaphase (MII )rates, the expanded CCs obtained at estrus coexisted with higher percentages of MII (p < 0.05). In conclusion, the differential expression patterns of GDF-9 and BMP-15 mRNA transcripts might be related to cumulus expansion and maturation processes, suggesting specific regulation and temporal changes in their expression.
Collapse
|
11
|
Liu MN, Zhang K, Xu TM. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. HUM FERTIL 2019; 24:325-332. [PMID: 31607184 DOI: 10.1080/14647273.2019.1672107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocrine and paracrine signals can be key regulators of ovarian physiology. The oocyte secretes growth factors which directly induce follicular development by a complex paracrine signalling process, and the transforming growth factorβ (TGF-β) superfamily has a pivotal role in this process. The bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes are relevant members of the TGF-β superfamily that encode proteins secreted by the oocytes into the ovarian follicles, where they contribute to creating an environment supporting follicle selection and growth. Their main functions include regulating cellular proliferation/differentiation, follicular survival/atresia, and oocyte maturation. Recent functional studies have validated genetic factors (Progesterone receptor membrane component 1 (PGRMC1)), Fragile X mental retardation 1 (FMR1, GDF9 and BMP15) as being causative of primary ovarian insufficiency (POI), BMP15/GDF9 gene variants were found to have a high incidence on the POI phenotype. This review considers the most recent research regarding the role of BMP15 and GDF9 in the genetic control of follicular development, paying special attention to the pathogenesis of POI.
Collapse
Affiliation(s)
- Meng-Na Liu
- Department of Clinical Laboratory, Jilin University Second Hospital , Changchun , China
| | - Kun Zhang
- Department of Research Center, Jilin University Second Hospital , Changchun , China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, Jilin University Second Hospital , Changchun , China
| |
Collapse
|
12
|
Morselli MG, Loiacono M, Colombo M, Mortarino M, Luvoni GC. Nuclear competence and genetic expression of growth differentiation factor-9 (GDF-9) of canine oocytes in 3D culture. Reprod Domest Anim 2019; 53 Suppl 3:117-124. [PMID: 30474337 DOI: 10.1111/rda.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 11/26/2022]
Abstract
To evaluate the ability of a 3D culture system in improving the nuclear and molecular competence of canine oocytes, barium alginate microcapsules were used for in vitro maturation (IVM) and the expression profile of one selected oocyte-secreted factor, the growth differentiation factor-9 (GDF-9) was analysed. In Experiment I, canine grade I cumulus-oocyte complexes (COCs) were in vitro matured in 3D microcapsules in a controlled atmosphere for 72 hr, and meiosis resumption rates were compared to those of oocytes cultured in traditional 2D microdrops of medium. In Experiment II, a primer pair specific for canine GDF-9 was designed, and preliminary tested in conventional PCR on genomic DNA. Total RNA content was isolated from oocytes at different time intervals (T0-T24-T48-T72) during in vitro 3D culture, and a reverse transcription to cDNA was performed. The expression of target gene was assessed by quantitative Reverse Transcription Real-Time PCR (qRT-PCR), and the obtained amplicons were sequenced to check the specificity of the analysis. Canine COCs resumed meiosis at higher rates in 3D microcapsules than in 2D microdrops (p < 0.05), even though no significant differences in the proportions of oocytes achieving full maturational stages were obtained. A significant dynamic decrease in GDF-9 expression was recorded during culture: after 72 hr of IVM, the GDF-9 transcription significantly dropped (p = 0.018) compared to 24 and 48 hr. In conclusion, in vitro 3D culture represents an efficient system for IVM of canine oocytes, and the expression profile of GDF-9 well reflects temporal dynamics for the acquisition of developmental competence in this species.
Collapse
Affiliation(s)
- Maria Giorgia Morselli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| | - Monica Loiacono
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| | - Michele Mortarino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Garcia P, Aspee K, Ramirez G, Dettleff P, Palomino J, Peralta OA, Parraguez VH, De Los Reyes M. Influence of growth differentiation factor 9 and bone morphogenetic protein 15 on in vitro maturation of canine oocytes. Reprod Domest Anim 2018; 54:373-380. [PMID: 30388311 DOI: 10.1111/rda.13371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) have pivotal roles in oocyte development in many species, therefore the aim was to investigate these factors during in vitro maturation (IVM) of canine oocytes. Canine cumulus oocytes complexes (COCs) were cultured in six groups for 72 hr in a supplemented TCM199-Hepes medium as (a) Control group; (b) GDF-9 antibody (Ab); (c) BMP-15 Ab; (d) recombinant human (rh) GDF-9; (e) rh BMP-15 or (f) rh BMP-15 and GDF-9. Data were evaluated by ANOVA. The Abs against GDF-9 or BMP-15 had a negative impact on meiotic development. Higher (p < 0.05) number of oocytes was arrested at GVBD stage when they were incubated with either GDF-9 Ab (64.4 ± 2.1%) or BMP-15 Ab (67.2%± 4.9%) in comparison to those in control group (32.4 ± 7.8%). In contrast, more (p < 0.05) oocytes in control group reached MI (37.4 ± 1.3%) and MII stages (10.2 ± 2.1%) comparing to those groups with GDF-9 Ab (23.1 ± 4.7% MI; 0.0% MII) or BMP-15 Ab (16.4 ± 2.4%MI; 5.9% ± 2.1 MII). Higher rates (p < 0.05) of oocytes in control group stayed still arrested at GV (19.9 ± 8.6%) in comparison to those cultured with either rhGDF-9 (3.7 ± 0.4%) or rhBMP-15 (10.9 ± 0.7%). However, there were no differences in MII rates between oocytes cultured with GDF-9 (14.7 ± 3.1) and BMP-15 (7.8 ± 2.5) separately. But, more oocytes (p < 0.05) reached the MII stage (20.5 ± 3.8%) compared to those exposed to each protein separately and to the control group. These results suggest that these proteins likely contribute to the meiotic development in dogs.
Collapse
Affiliation(s)
- Pablo Garcia
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Karla Aspee
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Georges Ramirez
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Jaime Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Oscar A Peralta
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Víctor H Parraguez
- Laboratory of Animal Physiology, Department of Biological Sciences, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Monica De Los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Cho SJ, Lee KL, Kim YG, Kim DH, Yoo JG, Yang BC, Park JK, Kong IK. Differential gene-expression profiles from canine cumulus cells of ovulated versus in vitro-matured oocytes. Reprod Fertil Dev 2017; 28:278-85. [PMID: 25004936 DOI: 10.1071/rd14086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/18/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus-oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus-oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P<0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.
Collapse
Affiliation(s)
- Su-Jin Cho
- Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea
| | - Yu-Gon Kim
- Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea
| | - Dong-Hoon Kim
- Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea
| | - Jae-Gyu Yoo
- Dairy Science Division, National Institute of Animal Science, Cheonan 331-801, Chungcheongnam-Do, Republic of Korea
| | - Byoung-Chul Yang
- Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea
| | - Jin-Ki Park
- Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea
| |
Collapse
|
15
|
Palomino J, De Los Reyes M. Temporal expression of GDF-9 and BMP-15 mRNAs in canine ovarian follicles. Theriogenology 2016; 86:1541-1549. [PMID: 27341772 DOI: 10.1016/j.theriogenology.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/14/2016] [Accepted: 05/14/2016] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the expression profiles of growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) mRNA in canine oocytes and follicular cells throughout development at the different phases of the estrus cycle. Ovarian structures (follicles and CL) and plasma progesterone concentration were used to confirm the physiological status of each donor. Denuded oocytes and their follicular cells were recovered from follicles (n = 675) distributed into 4 types (preantral, small antral ∼0.2-0.39 mm, medium antral ∼0.4-5.9 mm, and large antral ∼6-8 mm). Total RNA was extracted and reverse transcribed, and the levels of expression for these 2 genes were determined using a quantitative real-time polymerase chain reaction technique; the data were evaluated by ANOVA. Relative expressions levels of GDF-9 and BMP-15 transcripts were detected in the oocyte and follicular cells in all follicular stages evaluated, showing differential changes (P < 0.05) during development over the estrus cycle. The expression patterns of both transcripts were highly correlated between follicles cells and oocytes (r > 0.8; P < 0.05 for GDF-9 and BMP-15), although GDF-9 was expressed at higher levels (P < 0.05) in the oocyte compared with the follicle cells. All cell types showed more GDF-9 mRNA abundance at early developing stages, mainly in the anestrus phase, and declining levels in the later stages (P < 0.05), whereas BMP-15 mRNA levels increased (P < 0.05) in follicular cells and oocytes from the preantral to the later stages, and remained constant during the final preovulatory stage. In conclusion, these two genes were detected in follicular cells and oocytes and were differentially expressed during the follicular development across the estrus cycle.
Collapse
Affiliation(s)
- Jaime Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Monica De Los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
16
|
Differential expression of GDF-9 and BMP- 15 during follicular development in canine ovaries evaluated by flow cytometry. Anim Reprod Sci 2016; 167:59-67. [DOI: 10.1016/j.anireprosci.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
|
17
|
Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vivo or cultured in vitro. Theriogenology 2016; 85:315-22. [DOI: 10.1016/j.theriogenology.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/23/2022]
|
18
|
|