1
|
Delgado-Bermúdez A. Insights into crucial molecules and protein channels involved in pig sperm cryopreservation. Anim Reprod Sci 2024; 269:107547. [PMID: 38981798 DOI: 10.1016/j.anireprosci.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain.
| |
Collapse
|
2
|
Cecchini Gualandi S, Giangaspero B, Di Palma T, Macchia G, Carluccio A, Boni R. Oxidative profile and protease regulator potential to predict sperm functionality in donkey (Equus asinus). Sci Rep 2021; 11:20551. [PMID: 34654898 PMCID: PMC8521582 DOI: 10.1038/s41598-021-99972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Seminal plasma (SP) of donkey stallions was evaluated using various oxidative stress parameters as well as protease and protease inhibitor activities. SP was obtained by nine donkey stallions. In addition, one donkey stallion with non-obstructive azoospermia was enrolled in this study. Free radical scavenging activity (FRSA), the ferric reducing ability of plasma (FRAP), total antioxidant capacity (TAC), and total thiol level (TTL) were highly correlated with each other and with the protease inhibitor activity. However, only FRAP, TAC, and the nitrate/nitrite concentration (NOx) were significantly correlated with sperm concentration, production, and kinetics. Protease inhibitor activity was highly correlated with sperm concentration and production; however, it did not correlate with sperm kinetics. The azoospermic stallion produced a lower amount of semen than the normospermic stallions and its SP showed a lower antioxidant activity when evaluated with FRAP, TAC, and TTL as well as a higher NOx and a lower protease inhibitor activity. In conclusion, the evaluation of SP oxidative profile by FRAP, TAC, and NOx may provide reliable information on donkey sperm quality whereas protease inhibitor activity may play a role as a marker of the sperm concentration in this species.
Collapse
Affiliation(s)
| | - Brunella Giangaspero
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Tommaso Di Palma
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Giuseppe Macchia
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy.
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, Campus Macchia Romana, 85100, Potenza, Italy.
| |
Collapse
|
3
|
Panda AP, Roy SC, Sakhare DT, Badami S, Divyashree BC, Gurupriya VS, Dhali A. Reduced cytochrome oxidase activity and increased protein tyrosine phosphorylation of mitochondria-rich fractions of buffalo (Bubalus bubalis) spermatozoa after a cycle of freezing and thawing. Reprod Fertil Dev 2020; 31:1567-1580. [PMID: 31233700 DOI: 10.1071/rd18502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
The motility and fertility of mammalian spermatozoa are compromised when they are cryopreserved. Sperm mitochondrial proteins play a vital role in conferring motility. However, the effects of cryopreservation on mitochondria-specific proteins remain primarily unexplored in domestic animals, including buffaloes, so the present study aimed to evaluate this issue. Mitochondria were isolated from both non-cryopreserved and cryopreserved buffalo spermatozoa by sonication followed by sucrose density gradient ultracentrifugation. The purity of the mitochondrial preparation was assessed by cytochrome oxidase assay and electron microscopy. Mitochondria separated from cryopreserved buffalo spermatozoa were associated with significantly lower (P ≤ 0.05) cytochrome oxidase activity as compared with non-cryopreserved spermatozoa. The intensities of two low-molecular-mass mitochondrial proteins (30.1 kDa and 26.1 kDa) were significantly reduced as compared with the non-cryopreserved group. In addition, in cryopreserved buffalo sperm mitochondria, the intensities of three tyrosine phosphorylated proteins (126.6, 106.7 and 26 kDa) increased significantly compared with the non-cryopreserved group. Of these, tyrosine phosphorylation of the 26-kDa mitochondrial protein of cryopreserved sperm was very intense and unique because it could not be detected in the mitochondria of non-cryopreserved sperm. Thus, the study confirmed that both cytochrome oxidase activity and the proteins of buffalo sperm mitochondria undergo significant cryogenic changes in terms of quantity and quality after a cycle of freezing and thawing and this may be one of the important causes of reduced post-thaw motility and fertility of cryopreserved buffalo spermatozoa.
Collapse
Affiliation(s)
- Arya P Panda
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| | - Sudhir C Roy
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India; and Corresponding author.
| | - Deepak T Sakhare
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| | - Sharanabasav Badami
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| | - Bannur C Divyashree
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| | - Vijayasaraswathy S Gurupriya
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| | - Arindam Dhali
- Molecular Biology Laboratory, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560030, Karnataka, India
| |
Collapse
|
4
|
Atabay E, Fajardo Z, Tadeo R, Atabay E, Venturina E, Mingala C, Fissore R. Phospholipase C zeta 1 mRNA as a marker of oocyte-activation and fertilization potential of water buffalo (Bubalus bubalis) semen. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Perez-Patiño C, Barranco I, Li J, Padilla L, Martinez EA, Rodriguez-Martinez H, Roca J, Parrilla I. Cryopreservation Differentially Alters the Proteome of Epididymal and Ejaculated Pig Spermatozoa. Int J Mol Sci 2019; 20:ijms20071791. [PMID: 30978930 PMCID: PMC6479301 DOI: 10.3390/ijms20071791] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023] Open
Abstract
Cryopreservation induces differential remodeling of the proteome in mammalian spermatozoa. How these proteome changes relate to the loss of sperm function during cryopreservation remains unsolved. The present study aimed to clarify this issue evaluating differential changes in the proteome of fresh and frozen-thawed pig spermatozoa retrieved from the cauda epididymis and the ejaculate of the same boars, with clear differences in cryotolerance. Spermatozoa were collected from 10 healthy, sexually mature, and fertile boars, and cryopreserved using a standard 0.5 mL-straw protocol. Total and progressive motility, viability, and mitochondria membrane potential were higher and membrane fluidity and reactive oxygen species generation lower in frozen-thawed (FT) epididymal than ejaculated spermatozoa. Quantitative proteomics of fresh and FT spermatozoa were analyzed using a LC-ESI-MS/MS-based Sequential Window Acquisition of All Theoretical Spectra approach. Cryopreservation quantitatively altered more proteins in ejaculated than cauda epididymal spermatozoa. Differential protein-protein networks highlighted a set of proteins quantitatively altered in ejaculated spermatozoa, directly involved in mitochondrial functionality which would explain why ejaculated spermatozoa deteriorate during cryopreservation.
Collapse
Affiliation(s)
- Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
- Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain.
| | - Junwei Li
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
6
|
Codognoto VM, Yamada PH, Schmith RA, de Ruediger FR, Scott C, de Faria Lainetti P, Brochine S, de Paula Freitas-Dell'Aqua C, de Souza FF, Oba E. Functional insights into the role of seminal plasma proteins on sperm motility of buffalo. Anim Reprod Sci 2018; 195:251-258. [PMID: 29884323 DOI: 10.1016/j.anireprosci.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
The objective of the present study was to describe the proteins from the seminal plasma of buffalo and correlate these proteins with sperm motility. Ejaculates from sixteen Murrah buffalo were used. Semen collection was performed by electroejaculation, and the ejaculate was evaluated by macroscopic (volume) and microscopic analysis (subjective motility and vigor, as well as sperm concentration). After the analysis, the samples were centrifuged (800g for 10 min and 10,000 for 30 min at 4 °C), and the supernatant (seminal plasma) was used to determine total protein concentration by the Bradford method. Based on total protein concentration, an aliquot (50 μg) was taken to conduct protein in-solution digestion for nano-LC-ESI-Q-TOF mass spectrometry analysis. Samples were divided into two groups, minimal (little sperm motility) and greater (typical sperm motility), based on non-hierarchical clustering considering motility and emPAI protein value. The data were analyzed by multivariate statistical analysis using principal component analysis (PCA) and partial analysis of minimum squares discrimination (PLS-DA). Forty-eight proteins were detected in the seminal plasma, and fifteen were common to two groups. There were six proteins that were significantly different between the groups. The main functions of proteins in seminal plasma were catalytic and binding activity. Spermadhesin protein, ribonuclease, 14-3-3 protein zeta/delta and acrosin inhibitor were in greater amounts in seminal plasma from the group with greater sperm motility; prosaposin and peptide YY were in greater amounts in the group with little sperm motility. The proteins detected in the greater motility group were correlated with sperm protection, including protection against oxidative stress, lipid peroxidation, protease inhibition and prevention of premature capacitation and acrosome reaction. In the group with little sperm motility, one of the identified proteins is considered to be an antifertility factor, whereas the function of other identified protein is not definitive. Results from the present study add to the knowledge base about the molecular processes related with sperm motility, and these findings can be used for determining potential markers of semen quality.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil.
| | - Paulo Henrique Yamada
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Rúbia Alves Schmith
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Caroline Scott
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Patrícia de Faria Lainetti
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Suzane Brochine
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Camila de Paula Freitas-Dell'Aqua
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Fabiana Ferreira de Souza
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| | - Eunice Oba
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Department of Animal Reproduction and Veterinary Radiology, Botucatu, Brazil
| |
Collapse
|
7
|
Pini T, Rickard JP, Leahy T, Crossett B, Druart X, de Graaf SP. Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa. J Proteomics 2018; 181:73-82. [PMID: 29627624 DOI: 10.1016/j.jprot.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
Abstract
Cryopreservation causes significant lethal and sub-lethal damage to spermatozoa. In order to improve freezing outcomes, a comprehensive understanding of sub-lethal damage is required. Cryopreservation induced changes to sperm proteins have been investigated in several species, but few have employed currently available state of the art, data independent acquisition mass spectrometry (MS) methods. We used the SWATH LC-MS method to quantitatively profile proteomic changes to ram spermatozoa following exposure to egg yolk and cryopreservation. Egg yolk contributed 15 proteins to spermatozoa, including vitellogenins, apolipoproteins and complement component C3. Cryopreservation significantly altered the abundance of 51 proteins. Overall, 27 proteins increased (e.g. SERPINB1, FER) and 24 proteins decreased (e.g. CCT subunits, CSNK1G2, TOM1L1) in frozen thawed ram spermatozoa, compared to fresh spermatozoa. Chaperones constituted 20% of the proteins lost from spermatozoa following cryopreservation. These alterations may interfere with both normal cellular functioning and the ability of frozen thawed spermatozoa to appropriately respond to stress. This is the first study to apply SWATH mass spectrometry techniques to characterise proteins contributed by egg yolk based freezing media and to profile cryopreservation induced proteomic changes to ram spermatozoa. SIGNIFICANCE This study profiles changes to the sperm proteome induced by exposure to egg yolk based media and the process of cryopreservation, and the biological consequences are discussed.
Collapse
Affiliation(s)
- T Pini
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - J P Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - T Leahy
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - B Crossett
- Sydney Mass Spectrometry, The University of Sydney, NSW 2006, Australia
| | - X Druart
- UMR6175 INRA, CNRS-Université de Tours-Haras Nationaux, Station de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - S P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Castelo Branco M, Castelo Branco Y, Moraes Junior F, Barros F, Barçante F, Carvalho G, Melo Evangelista L, Abreu-Silva A, Sousa Filho M, Souza J. Plasminogen activator inhibitor 1 and Antipain preserve acrosome integrity of bovine spermatozoa during cryopreservation. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Seminal plasma contains serine proteases and serine protease inhibitor, which are involved in mammalian fertilization, and the inhibitors can be applied to prevent cold-induced sperm capacitation. The effects of different concentrations of two serine protease inhibitors were analyzed, Plasminogen activator inhibitor 1 - PAI-1 (70ƞg, 140ƞg and 210 ƞg) and Antipain (10µg, 50µg and 100µg) as supplementation to bovine semen cryopreservation extender. The effects of the inhibitors on the sperm parameters (sperm kinetics - CASA, acrosome integrity, plasma membrane integrity, mitochondrial membrane potential, sperm defects and acrosome reaction rate) were evaluated in the post-thaw semen. Cryopreservation of sperm with Antipain decreased post-thaw kinetic parameters of MP, VSL, LIN, SRT and the percentage of hyper-activated sperm while PAI-1 (210 ƞg) decreased VSL and LIN. Antipain and PAI-1 had no effect on the integrity parameters of the plasma membrane, mitochondrial membrane potential and sperm defects. Sperm cryopreserved in the presence of Antipain and PAI-1 (70 and 140 ƞg) preserved acrosome integrity, as they were able to complete the in vitro acrosome reaction. In conclusion, the serine protease inhibitors, Antipain and PAI-1 (70 and 140ƞg) are able to preserve the acrosome integrity of cryopreserved bovine sperm.
Collapse
|
9
|
Gelatin Binding Proteins in Reproductive Physiology. Indian J Microbiol 2016; 56:383-393. [PMID: 27784933 DOI: 10.1007/s12088-016-0618-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022] Open
Abstract
In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.
Collapse
|
10
|
Kar S, Divyashree BC, Roy SC. Temporal leakage of Cu,Zn superoxide dismutase and loss of two low-molecular-weight forms of glutathione peroxidase-1 from buffalo (Bubalus bubalis) sperm after freezing and thawing. Theriogenology 2015; 83:512-519.e2. [DOI: 10.1016/j.theriogenology.2014.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
|
11
|
Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm. Theriogenology 2014; 83:504-11. [PMID: 25459024 DOI: 10.1016/j.theriogenology.2014.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
Abstract
Although frozen semen is widely used commercially in the cattle breeding industry, the resultant pregnancy rate is lower than that produced using fresh semen. Cryodamage is a major problem in semen cryopreservation; it causes changes to sperm transcripts that may influence sperm function and motility. We used suppression subtractive hybridization technology to establish a complementary DNA subtractive library, and combined microarray technology and sequence homology analysis to screen and analyze differentially expressed genes in the library, comparing fresh sperm with the frozen-thawed sperm of nine bulls. Overall, 19 positive differentially expressed unigenes were identified using microarray data and Significance Analysis of Microarrays software (|score (d)| ≥ 2, fold change > 1, and false discovery rate < 0.05). Of 15 differentially expressed unigenes exhibited high sequence homology (E-value ≤ 1 × 10(-3)), 12 were upregulated in frozen-thawed sperm, the remaining 3 were upregulated in fresh sperm, and 4 other clones were identified as unknown because of incomplete sequences or because there was no significant sequence homology (E-value > 1E(-03)) and were considered novel genes. The expression of five of these genes-RPL31, PRKCE, PAPSS2, PLP1, and R1G7-was verified by quantitative real-time reverse transcription-polymerase chain reaction. There was a significant differential expression of the RPL31 gene (P < 0.05). Our preliminary results provide an overview of differentially expressed transcripts between fresh and frozen-thawed sperm of Holstein bulls.
Collapse
|