1
|
Cortez JV, Hardwicke K, Cuervo-Arango J, Grupen CG. Cloning horses by somatic cell nuclear transfer: Effects of oocyte source on development to foaling. Theriogenology 2023; 203:99-108. [PMID: 37011429 DOI: 10.1016/j.theriogenology.2023.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The cloning of horses is a commercial reality, yet the availability of oocytes for cloned embryo production remains a major limitation. Immature oocytes collected from abattoir-sourced ovaries or from live mares by ovum pick-up (OPU) have both been used to generate cloned foals. However, the reported cloning efficiencies are difficult to compare due to the different somatic cell nuclear transfer (SCNT) techniques and conditions used. The objective of this retrospective study was to compare the in vitro and in vivo development of equine SCNT embryos produced using oocytes recovered from abattoir-sourced ovaries and from live mares by OPU. A total of 1,128 oocytes were obtained, of which 668 were abattoir-derived and 460 were OPU-derived. The methods used for in vitro maturation and SCNT were identical for both oocyte groups, and the embryos were cultured in Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham medium supplemented with 10% fetal calf serum. Embryo development in vitro was assessed, and Day 7 blastocysts were transferred to recipient mares. The embryos were transferred fresh when possible, and a cohort of vitrified-thawed OPU-derived blastocysts was also transferred. Pregnancy outcomes were recorded at Days 14, 42 and 90 of gestation and at foaling. The rates of cleavage (68.7 ± 3.9% vs 62.4 ± 4.7%) and development to the blastocyst stage (34.6 ± 3.3% vs 25.6 ± 2.0%) were superior for OPU-derived embryos compared with abattoir-derived embryos (P < 0.05). Following transfer of Day 7 blastocysts to a total of 77 recipient mares, the pregnancy rates at Days 14 and 42 of gestation were 37.7% and 27.3%, respectively. Beyond Day 42, the percentages of recipient mares that still had a viable conceptus at Day 90 (84.6% vs 37.5%) and gave birth to a healthy foal (61.5% vs 12.5%) were greater for the OPU group compared with the abattoir group (P < 0.05). Surprisingly, more favourable pregnancy outcomes were achieved when blastocysts were vitrified for later transfer, probably because the uterine receptivity of the recipient mares was more ideal. A total of 12 cloned foals were born, 9 of which were viable. Given the differences observed between the two oocyte groups, the use of OPU-harvested oocytes for generating cloned foals is clearly advantageous. Continued research is essential to better understand the oocyte deficiencies and increase the efficiency of equine cloning.
Collapse
|
2
|
Salamone D, Maserati M. Horse Somatic Cell Nuclear Transfer Using Zona Pellucida-Enclosed and Zona-Free Oocytes. Methods Mol Biol 2023; 2647:269-281. [PMID: 37041341 DOI: 10.1007/978-1-0716-3064-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Horse cloning by somatic cell nuclear transfer (SCNT) is an attractive scientific and commercial endeavor. Moreover, SCNT allows generating genetically identical animals from elite, aged, castrated, or deceased equine donors. Several variations in the horse SCNT method have been described, which may be useful for specific applications. This chapter describes a detailed protocol for horse cloning, thus including SCNT protocols using zona pellucida (ZP)-enclosed or ZP-free oocytes for enucleation. These SCNT protocols are under routine use for commercial equine cloning.
Collapse
Affiliation(s)
- Daniel Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Buenos Aires, Argentina.
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Marc Maserati
- Embryo Production In Vitro Clonagem/In Vitro Equinos, Mogi Mirim, São Paulo, Brazil
| |
Collapse
|
3
|
Maniego J, Pesko B, Habershon-Butcher J, Hincks P, Taylor P, Tozaki T, Ohnuma A, Stewart G, Proudman C, Ryder E. Use of mitochondrial sequencing to detect gene doping in horses via gene editing and somatic cell nuclear transfer. Drug Test Anal 2022; 14:1429-1437. [PMID: 35362263 DOI: 10.1002/dta.3267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Gene editing and subsequent cloning techniques offer great potential not only in genetic disease correction in domestic animals, but also in livestock production by enhancement of desirable traits. The existence of the technology, however, leaves it open to potential misuse in performance-led sports such as horseracing and other equestrian events. Recent advances in equine gene editing, regarding the generation of gene-edited embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer, has highlighted the need to develop tools to detect potential prohibited use of the technology. One possible method involves the characterisation of the mitochondrial genome (which is not routinely preserved during cloning) and comparing it to the sequence of the registered dam. We present here our approach to whole-mitochondrial sequencing using tiled long-range PCR and next-generation sequencing. To determine whether the background mutation rate in the mitochondrial genome could potentially confound results, we sequenced ten sets of dam and foal duos. We found variation between duos but none within duos, indicating that this method is feasible for future screening systems. Analysis of WGS data from over one hundred Thoroughbred horses revealed wide variation in the mitochondria sequence within the breed, further displaying the utility of this approach.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Bogusia Pesko
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | | | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Polly Taylor
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Graham Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Christopher Proudman
- School of Veterinary Medicine, Daphne Jackson Road, University of Surrey, Guildford, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| |
Collapse
|
4
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
5
|
Metcalf ES, Masterson KR, Battaglia D, Thompson JG, Foss R, Beck R, Cook NL, O Leary T. Conditions to optimise the developmental competence of immature equine oocytes. Reprod Fertil Dev 2021; 32:1012-1021. [PMID: 32693913 DOI: 10.1071/rd19249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Optimising the developmental potential of immature equine oocytes and invitro-produced (IVP) embryos was explored through modifications of established media and holding temperature. In Experiment 1, delaying spontaneous resumption of meiosis through the process of simulated physiological oocyte maturation with the addition of the adenylate cyclase activator forskolin (50µM) and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (100µM) to overnight holding medium before maturation improved blastocyst production (P<0.05). In Experiment 2, the blastocyst production rate was increased significantly when cumulin (100ng mL-1) was added to the overnight holding or culture media (P<0.05). In Experiment 3, immature oocytes held overnight at 16°C before maturation had improved developmental competence than those held at 20°C and 5°C (P<0.05). There was no difference between maturation rates, but blastocyst formation per cleaved oocyte was significantly greater in oocytes held overnight at 16°C than at 20°C or 5°C. Furthermore, blastocyst formation per recovered oocyte and per fertilised oocyte was greater when oocytes were held before maturation at 16°C than at 5°C (P<0.05). In Experiment 4, the addition of sodium ascorbate (AC; 50µg mL-1) to the maturation and/or culture media of oocytes and IVP embryos did not improve blastocyst production, but did appear to lower cleavage rates compared with oocytes and embryos cultured without AC.
Collapse
Affiliation(s)
- Elizabeth S Metcalf
- Honahlee PC, 14005 SW Tooze Road, Sherwood, OR 97140, USA; and Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA; and Corresponding author.
| | - Keith R Masterson
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| | - David Battaglia
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| | - Jeremy G Thompson
- School of Medicine, The University of Adelaide, Medical School, South Adelaide, SA 5005, Australia
| | - Robert Foss
- Equine Medical Services, 5851E Deer Park Road, Columbia, MO 65201, USA
| | - Richard Beck
- In Foal, Inc., 39185 Diamond Valley Road, Hemet, CA 92543, USA
| | - Nancy L Cook
- Advanced Equine Reproduction, 1145 Arroyo Mesa, Solvang, CA 93463, USA
| | - Thomas O Leary
- Andrology Division, Department of Obstetrics and Gynecology, Oregon Health and Science University School of Medicine, 3303S. Bond Avenue, Portland, OR 97239, USA
| |
Collapse
|
6
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
7
|
Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int J Mol Sci 2021; 22:ijms22063099. [PMID: 33803567 PMCID: PMC8002851 DOI: 10.3390/ijms22063099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.
Collapse
|
8
|
Fang X, Xia W, Cao H, Guo Y, Wang H, Zhang X, Wan P, Liu C, Wei Q, Sun S, Tian S, Li J, Wang Z. Effect of supplemetation of Zebularine and Scriptaid on efficiency of in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Anim Biotechnol 2019; 31:155-163. [PMID: 30734624 DOI: 10.1080/10495398.2018.1559846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Somatic cell nuclear transfer (SCNT) technology has been applied in the construction of disease model, production of transgenic animals, therapeutic cloning, and other fields. However, the cloning efficiency remains limited. In our study, to improve SCNT efficiency, brilliant cresyl blue (BCB) staining were chosen to select recipient oocytes. In addition, DNA methyltransferase inhibitor Zebularine (5 nmol/L) and histone deacetylase inhibitor Scriptaid (0.2 μmol/L) were jointly used to treat sheep donor cumulus cells and reconstructed embryo. Moreover, the expression levels of embryonic development-related genes (OCT4, SOX2, H19, IGF2 and Dnmt1) of reconstructed embryo were also detected. Using BCB + oocytes as recipient cell, donor cumulus cells and reconstructed embryos were treated with 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid, the blastocyst rate in Zeb + SCR-SCNT group (28.25%) was significantly higher than SCNT (21.16%) (p < 0.05). Furthermore, results showed that expression levels of OCT4, SOX2, H19, IGF2 and Dnmt1 genes in Zeb + SCR-SCNT embryos were more similar to IVF embryos. Our study proved that 5 nmol/L Zebularine and 0.2 μmol/L Scriptaid treating with sheep donor cumulus cells and reconstructed embryos improved SCNT blastocyst rate and relieve the abnormal expression of embryonic developmental related genes.
Collapse
Affiliation(s)
- Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Wei Xia
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hui Cao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Yanhua Guo
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Han Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Xiaosheng Zhang
- Animal Husbandry and Veterinary Research Institute of Tianjin, Tianjin, China
| | - Pengcheng Wan
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chuang Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Qiaoli Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China
| | - Shuchun Sun
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Shujun Tian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| | - Zhigang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, PR China.,Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, PR China
| |
Collapse
|
9
|
Brom-de-Luna JG, Canesin HS, Wright G, Hinrichs K. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting. Anim Reprod Sci 2018; 190:10-17. [DOI: 10.1016/j.anireprosci.2017.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|
10
|
Olivera R, Moro LN, Jordan R, Luzzani C, Miriuka S, Radrizzani M, Donadeu FX, Vichera G. In Vitro and In Vivo Development of Horse Cloned Embryos Generated with iPSCs, Mesenchymal Stromal Cells and Fetal or Adult Fibroblasts as Nuclear Donors. PLoS One 2016; 11:e0164049. [PMID: 27732616 PMCID: PMC5061425 DOI: 10.1371/journal.pone.0164049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
The demand for equine cloning as a tool to preserve high genetic value is growing worldwide; however, nuclear transfer efficiency is still very low. To address this issue, we first evaluated the effects of time from cell fusion to activation (<1h, n = 1261; 1-2h, n = 1773; 2-3h, n = 1647) on in vitro and in vivo development of equine embryos generated by cloning. Then, we evaluated the effects of using different nuclear donor cell types in two successive experiments: I) induced pluripotent stem cells (iPSCs) vs. adult fibroblasts (AF) fused to ooplasts injected with the pluripotency-inducing genes OCT4, SOX2, MYC and KLF4, vs. AF alone as controls; II) umbilical cord-derived mesenchymal stromal cells (UC-MSCs) vs. fetal fibroblasts derived from an unborn cloned foetus (FF) vs. AF from the original individual. In the first experiment, both blastocyst production and pregnancy rates were higher in the 2-3h group (11.5% and 9.5%, respectively), respect to <1h (5.2% and 2%, respectively) and 1-2h (5.6% and 4.7%, respectively) groups (P<0.05). However, percentages of born foals/pregnancies were similar when intervals of 2-3h (35.2%) or 1-2h (35.7%) were used. In contrast to AF, the iPSCs did not generate any blastocyst-stage embryos. Moreover, injection of oocytes with the pluripotency-inducing genes did not improve blastocyst production nor pregnancy rates respect to AF controls. Finally, higher blastocyst production was obtained using UC-MSC (15.6%) than using FF (8.9%) or AF (9.3%), (P<0.05). Despite pregnancy rates were similar for these 3 groups (17.6%, 18.2% and 22%, respectively), viable foals (two) were obtained only by using FF. In summary, optimum blastocyst production rates can be obtained using a 2-3h interval between cell fusion and activation as well as using UC-MSCs as nuclear donors. Moreover, FF line can improve the efficiency of an inefficient AF line. Overall, 24 healthy foals were obtained from a total of 29 born foals.
Collapse
Affiliation(s)
| | - Lucia Natalia Moro
- Laboratory of Biology of Cell Development, LIAN-Unit associated with CONICET, FLENI, Belen de Escobar, Buenos Aires, Argentina
| | | | - Carlos Luzzani
- Laboratory of Biology of Cell Development, LIAN-Unit associated with CONICET, FLENI, Belen de Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Biology of Cell Development, LIAN-Unit associated with CONICET, FLENI, Belen de Escobar, Buenos Aires, Argentina
| | - Martin Radrizzani
- Laboratory of Neruogenetic and Molecular Cytogentic, School of Sciences, National University of San Martin, CONICET, Buenos Aires, Argentina
| | - F. Xavier Donadeu
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
11
|
|
12
|
Pozor MA, Sheppard B, Hinrichs K, Kelleman AA, Macpherson ML, Runcan E, Choi YH, Diaw M, Mathews PM. Placental abnormalities in equine pregnancies generated by SCNT from one donor horse. Theriogenology 2016; 86:1573-1582. [PMID: 27325574 DOI: 10.1016/j.theriogenology.2016.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
Placental changes associated with SCNT have been described in several species, but little information is available in this area in the horse. We evaluated the ultrasonographic, gross, and histopathological characteristics of placentas from three successful and five unsuccessful equine SCNT pregnancies, established using cells from a single donor horse. Starting at approximately 6-month gestation, the pregnancies were monitored periodically using transrectal (TR) and transabdominal (TA) ultrasonography (US) to examine the placentas, fetal fluids, and fetuses. Of the five mares that aborted, one mare did so suddenly without any abnormal signs detected by US and four had enlarged umbilical vessels visible on TA-US before abortion. Placental edema (TR-US) and intravascular thrombi in the umbilical cords were seen (TA-US) in two of these four mares; one mare aborted shortly after acute placental separation was identified on TA-US. In three mares that delivered live foals, TA-US showed engorged allantoic vessels and enlarged umbilical vessels. Two of these mares had placental thickening visible on TR-US, interpreted as a sign of placentitis, that subsided after aggressive medical treatment. Seven of the eight placentas were submitted for gross and histopathological examinations after delivery. All placentas had some degree of edema, abnormally engorged allantoic vessels, and enlarged umbilical vessels. Placentitis, large allantoic vesicles, cystic pouches in the fetal part of the cord, and hemorrhages and thrombi in the umbilical vessels were detected only in placentas from mares that aborted. Equine pregnancies resulting from SCNT may be associated with placental pathologies that can be detected using ultrasonography. However, interpreting their severity is difficult. Although placental abnormalities have been observed in SCNT pregnancies in other species, to the best of our knowledge, placentitis has not been previously reported and may be an important complication of equine SCNT pregnancies, leading to pregnancy loss.
Collapse
Affiliation(s)
- Malgorzata A Pozor
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | - Barbara Sheppard
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Audrey A Kelleman
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Margo L Macpherson
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Erin Runcan
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Young-Ho Choi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mouhamadou Diaw
- Department of Large Animal Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Philip M Mathews
- Equine Reproduction Center, Peterson & Smith Equine Hospital, Ocala, Florida, USA
| |
Collapse
|
13
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Kuhl J, Stock KF, Wulf M, Aurich C. Maternal Lineage of Warmblood Mares Contributes to Variation of Gestation Length and Bias of Foal Sex Ratio. PLoS One 2015; 10:e0139358. [PMID: 26436555 PMCID: PMC4593555 DOI: 10.1371/journal.pone.0139358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022] Open
Abstract
Maternal lineage influences performance traits in horses. This is probably caused by differences in mitochondrial DNA (mtDNA) transferred to the offspring via the oocyte. In the present study, we investigated if reproductive traits with high variability—gestation length and fetal sex ratio—are influenced by maternal lineage. Data from 142 Warmblood mares from the Brandenburg State Stud at Neustadt (Dosse), Germany, were available for the study. Mares were grouped according to their maternal lineage. Influences on the reproduction parameters gestation length and sex ratio of offspring were analyzed by simple and multiple analyses of variance. A total of 786 cases were included. From the 142 mares, 119 were assigned to six maternal lineages with n≥10 mares per lineage, and 23 mares belonged to smaller maternal lineages. The mean number of live foals produced per mare was 4.6±3.6 (±SD). Live foal rate was 83.5%. Mean gestation length was 338.5±8.9 days (±SD) with a range of 313 to 370 days. Gestation length was affected by maternal lineage (p<0.001). Gestation length was also significantly influenced by the individual mare, age of the mare, year of breeding, month of breeding and sex of the foal (p<0.05). Of the 640 foals born alive at term, 48% were male and 52% female. Mare age group and maternal lineage significantly influenced the sex ratio of the foals (p<0.05). It is concluded that maternal lineage influences reproductive parameters with high variation such as gestation length and foal sex ratio in horses. In young primiparous and aged mares, the percentage of female offspring is higher than the expected 1:1 ratio.
Collapse
Affiliation(s)
- J. Kuhl
- Graf Lehndorff-Institut for Equine Science, Vetmeduni Vienna, Neustadt (Dosse), Germany
- Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria
- * E-mail:
| | - K. F. Stock
- Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden (Aller), Germany
| | - M. Wulf
- Graf Lehndorff-Institut for Equine Science, Vetmeduni Vienna, Neustadt (Dosse), Germany
| | - C. Aurich
- Artificial Insemination and Embryo Transfer, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
15
|
Choi YH, Velez IC, Macías-García B, Hinrichs K. Timing factors affecting blastocyst development in equine somatic cell nuclear transfer. Cell Reprogram 2015; 17:124-30. [PMID: 25826725 DOI: 10.1089/cell.2014.0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In nuclear transfer (NT), exposure of donor cell chromatin to the ooplast cytoplasm may aid reprogramming; however, the length of exposure feasible is limited by the developmental life span of the oocyte. We examined the effect of duration of nucleus-cytoplasmic exposure before activation and of in vitro maturation (IVM) in equine NT. In experiment 1, 24 h IVM and a delay of 2, 5, or 8 h between reconstruction and activation yielded 4%, 15%, and 11% blastocysts, respectively. In experiment 2, a 5-h activation delay yielded 17% and 22% blastocysts with two donor cell lines. In experiment 3, using a 5-h activation delay, the blastocyst rate was significantly higher using oocytes after 20 h IVM than after 24 h IVM; however, only 28% of oocytes were in metaphase II (MII) at 20 h. In experiment 4, oocytes were denuded of cumulus at 20 h, and those in metaphase I (MI) were returned to culture for 3 h (20+3H treatment); blastocyst rates were 30% and 27%, respectively (8-h and 5-h delay to activation, respectively). Four live foals resulted from the transfer of 17 blastocysts (24%) produced using MII oocytes and a 5- or 8-h activation delay. Use of equine oocytes immediately after reaching MII, combined with a longer delay from reconstruction to activation, increased developmental competence after equine NT.
Collapse
Affiliation(s)
- Young-Ho Choi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University , College Station, Texas, 77843
| | | | | | | |
Collapse
|
16
|
Johnson AK, Hinrichs K. Neonatal Care and Management of Foals Derived by Somatic Cell Nuclear Transfer. Methods Mol Biol 2015; 1330:189-201. [PMID: 26621599 DOI: 10.1007/978-1-4939-2848-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are few reports on the birth of foals resulting from equine adult somatic cell nuclear transfer (NT). On evaluation of reports of 28 live-born adult somatic-cell NT (clone) foals, 3 died within 2 weeks of birth of complications. Approximately 50 % of all reported cloned foals had complications, some requiring aggressive supportive care. The most common abnormalities reported were neonatal maladjustment syndrome, enlarged umbilical remnant, and angular deformity of the forelimbs, similar to problems described in cloned cattle. In contrast, large offspring syndrome and gross abnormalities of the fetal membranes which are described in cloned cattle are not reported in cloned foals. Reports of the health of foals produced by nuclear transfer suggest that NT foals should be treated aggressively as at-risk foals until all parameters are normal.
Collapse
Affiliation(s)
- Aime K Johnson
- JT Vaughn Large Animal Teaching Hospital, College of Veterinary Medicine, Auburn University, 1500 Wire Road, Auburn, AL, 36849, USA.
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|