1
|
Namkung HR, Jung SB, Nam SY, Han JW, Song B, Lee ES, Lee ST. Temporal optimization of meiotic arrest for enhancing oocyte maturity during in vitro maturation of porcine median antral follicles. Reprod Biol 2024; 25:100987. [PMID: 39644800 DOI: 10.1016/j.repbio.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
During in vitro maturation (IVM), median antral follicles (MAFs) were mechanically aspirated from the porcine ovarian cortex, and this process causes an early disconnection of follicular somatic cells from oocytes within antral follicles before the formation of graafian follicles. Thus, nuclear maturation is accelerated ahead of the completion of cytoplasmic maturation. Dibutyryl-cAMP (dbcAMP), a well-known cAMP modulator, is used to inhibit the resumption of meiosis in immature oocytes. However, there is no information on the optimal timeframe for sustaining meiotic arrest to enhance oocyte maturity during IVM. To determine the optimal duration of meiotic arrest, immature cumulus-oocyte complexes (COCs) from MAFs were cultured with 1 mM dbcAMP for 0, 4, 8, 12, 16, or 22 h, followed by further IVM without dbcAMP for 44, 40, 36, 32, 28, or 22 h. Subsequently, nuclear maturation, cumulus cell expansion score, perivitelline space size, glutathione (GSH) and reactive oxygen species (ROS) levels, and preimplantation development of parthenogenetic and in vitro-fertilized embryos were assessed in oocytes from each group. The results showed that a 16-h treatment with 1 mM dbcAMP within the 44-h IVM process yielded the highest oocyte maturity. Accordingly, we established an advanced IVM protocol for producing oocytes with superior maturity from porcine MAFs by achieving nuclear maturation 36 h after initiating IVM, using a 16-h treatment with 1 mM dbcAMP within the 44-h IVM process.
Collapse
Affiliation(s)
- Ha Rin Namkung
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su Bin Jung
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So Yeon Nam
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Han
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Beak Song
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun Song Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kustogen, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Huang H, Huang C, Li Y, Liang X, Kim N, Xu Y. Methyl Paraben Affects Porcine Oocyte Maturation Through Mitochondrial Dysfunction. Biomolecules 2024; 14:1466. [PMID: 39595642 PMCID: PMC11591637 DOI: 10.3390/biom14111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Parabens are widely used in various industries, which are including chemical, pharmaceutical, food, cosmetic, and plastic processing industries. Among these, methyl paraben (MP) serves as an antimicrobial preservative in processed foods, pharmaceuticals, and cosmetics, and it is particularly detected in baby care products. Studies indicate that MP functions as an endocrine-disrupting compound with estrogenic properties, negatively affecting mitochondrial bioenergetics and antioxidant activity in testicular germ cells. However, limited information exists regarding studies on the effects of MP in oocytes. The aim of this study was to investigate the specific mechanism and the toxic effects of MP during oocyte maturation cultured in vitro using a porcine oocyte model. The results indicated that MP (50 μM) inhibited oocyte expansion, significantly reducing the expression of expansion-related genes MAPK1 and ERK1, and decreased the first polar body extrusion significantly as well. ATP levels decreased, reactive oxygen species (ROS) levels remained unchanged, and glutathione (GSH) levels decreased significantly, resulting in an elevated ROS/GSH ratio. The expression of antioxidant genes SOD1 and GPX was significantly decreased. Additionally, a significant decrease in levels of mitochondrial production and biosynthesis protein PGC1α+β, whereas levels of antioxidant-related protein Nrf2 and related gene expression were significantly increased. Autophagy protein LC3B and gene expression significantly decreased, and apoptosis assay indicated a significant increase in levels of caspase3 protein and apoptosis-related genes. These results demonstrated the negative effect of MP on oocyte maturation. In conclusion, our findings indicate that MP disrupts redox balance and induces mitochondrial dysfunction during meiosis in porcine oocytes, resulting in the inhibition of meiotic progression. The present study reveals the mechanism underlying the effects of methyl para-hydroxybenzoate on oocyte maturation.
Collapse
Affiliation(s)
- Huimei Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Chuman Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Yinghua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning 530004, China;
| | - Namhyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| | - Yongnan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529000, China; (H.H.); (C.H.); (Y.L.)
| |
Collapse
|
3
|
Six R, Benedetti C, Fan Y, Guan X, Gansemans Y, Hedia M, Bogado Pascottini O, Pavani KC, Van Nieuwerburgh F, Deforce D, Smits K, Van Soom A, Peelman L. Expression profile and gap-junctional transfer of microRNAs in the bovine cumulus-oocyte complex. Front Cell Dev Biol 2024; 12:1404675. [PMID: 39055654 PMCID: PMC11269113 DOI: 10.3389/fcell.2024.1404675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
MicroRNAs (miRNA) are important regulators of oocyte maturation, playing a key role in modulating gene expression both in a temporal- and spatial-specific manner. These small non-coding RNAs are involved in important processes during oocyte maturation, acting as messengers between the oocyte and its surrounding cumulus cells. Despite its significance, the bidirectional communication mechanism is still unknown. To test miRNA communication between oocyte and surrounding cumulus cells through the gap junctions the gap junctions were either blocked with carbenoxolone or not. MiRNA sequencing of oocytes at 1, 6, and 22 h of in vitro maturation was then performed. Among the differentially expressed miRNAs, bta-miR-21-5p, a regulator of cumulus cell viability and oocyte maturation, was the only previously known miRNA. Furthermore, by labeling a bta-miR-21-5p mimic with FAM, crossing of this miRNA through the gap junctions within the cumulus-oocyte complex could be visualized and internalization in the oocyte was confirmed by RT-qPCR. In conclusion, this study provides, for the first time, evidence that miRNA communication within the bovine cumulus-oocyte complex is enabled through the gap junctional network.
Collapse
Affiliation(s)
- R. Six
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - C. Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - Y. Fan
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - X. Guan
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| | - Y. Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Mohamed Hedia
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - O. Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - K. C. Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - F. Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - D. Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - K. Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - A. Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke, Belgium
| | - L. Peelman
- Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging. Reprod Sci 2024; 31:906-916. [PMID: 37917297 DOI: 10.1007/s43032-023-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Female fertility decreases during aging. The development of effective therapeutic strategies to address the age-related decline in oocyte quality and quantity and its accurate diagnosis remain major challenges. In this review, we summarize our current understanding of the study of aging and infertility, focusing primarily on the molecular basis of energy metabolism, mitochondrial function, and redox homeostasis in granulosa cells and oocytes, and discuss perspectives on future research directions. Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production, cellular redox homeostasis, aging, and senescence. Young granulosa cells favor glycolysis and actively produce pyruvate, NADPH, and other metabolites. Oocytes rely on oxidative phosphorylation fueled by nutrients, metabolites, and antioxidants provided by the adjacent granulosa cells. A reduced cellular energy metabolism phenotype, including both aerobic glycolysis and mitochondrial respiration, is characteristic of older female granulosa cells compared with younger female granulosa cells. Aged oocytes become more susceptible to oxidative damage to cells and mitochondria because of further depletion of antioxidant-dependent ROS scavenging systems. Molecular perturbations of gene expression caused by a subtle change in the follicular fluid microenvironment adversely affect energy metabolism and mitochondrial dynamics in granulosa cells and oocytes, further causing redox imbalance and accelerating aging and senescence. Furthermore, recent advances in technology are beginning to identify biofluid molecular markers that may influence follicular development and oocyte quality. Accumulating evidence suggests that redox imbalance caused by abnormal energy metabolism and/or mitochondrial dysfunction is closely linked to the pathophysiology of age-related subfertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichi-Jyonishi-Machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-Cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-Cho, Nara, 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
| |
Collapse
|
5
|
Somfai T. Vitrification of immature oocytes in pigs. Anim Sci J 2024; 95:e13943. [PMID: 38578008 DOI: 10.1111/asj.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Cryopreservation of oocytes is an important technology for the in vitro gene banking of female germplasm. Although slow freezing is not feasible, porcine oocytes survive vitrification at high rates. Cryopreservation at the germinal vesicle stage appears to be more advantageous than that at the metaphase-II stage. Several factors are considered to affect the success of vitrification and subsequent utilization of immature porcine oocytes such as the device, the protocols for cryoprotectant application, warming, and the post-warming culture. Although live piglets could be obtained from vitrified immature oocytes, their competence to develop to the blastocyst stage is still reduced compared to their non-vitrified counterparts, indicating that there is room for further improvement. Vitrified oocytes suffer various types of damage and alteration which may reduce their developmental ability. Some of these can recover to some extent during subsequent culture, such as the damage of the cytoskeleton and mitochondria. Others such as premature nuclear progression, DNA damage and epigenetic alterations will require further research to be clarified and addressed. To date, the practical application of oocyte vitrification in pigs has been confined to the gene banking of a few native breeds.
Collapse
Affiliation(s)
- Tamás Somfai
- Animal Model Development Group, Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
6
|
Wang Y, Qi JJ, Yin YJ, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic Acid Enhances Oocyte Maturation and the Subsequent Development of Bovine Oocytes. Int J Mol Sci 2023; 24:14804. [PMID: 37834252 PMCID: PMC10573426 DOI: 10.3390/ijms241914804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 μM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 μM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| |
Collapse
|
7
|
Martinez CA, Rizos D, Rodriguez-Martinez H, Funahashi H. Oocyte-cumulus cells crosstalk: New comparative insights. Theriogenology 2023; 205:87-93. [PMID: 37105091 DOI: 10.1016/j.theriogenology.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Mammalian follicles are constituted of a complex structure composed of several layers of granulosa cells surrounding the oocyte and of theca cells that reside beneath its basement membrane. During folliculogenesis, granulosa cells separate into two anatomically and functionally distinct sub-types; the mural cells lining the follicle wall and the oocyte-surrounding cumulus cells, i.e. those in intimate metabolic contact with the oocyte. The cumulus cells connecting with the oocyte have trans-zonal cytoplasmic projections which, penetrating the zona pellucida, form the cumulus-oocyte complex. The connections through gap junctions allow the transfer of small molecules between oocyte and cumulus cells, such as ions, metabolites, and amino acids necessary for oocyte growth, as well as small regulatory molecules that control oocyte development. The bi-directional communication between the oocyte and cumulus cells is crucial for the development and functions of both cell types. Our current knowledge of the relationship between the oocyte and its surrounding cumulus cells continues to change as we gain a greater understanding of factors regulating oocyte development and folliculogenesis. This review will mainly focus on the reciprocal interaction between oocytes and cumulus cells during the latter stages of follicle development i.e. through antral development to periovulatory events including oocyte maturation, expansion, and degradation of the cumulus matrix.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Animal Science, Okayama University, Okayama, Japan; Department of Animal Reproduction, INIA-CSIC, Madrid, Spain; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
8
|
Aloisi M, Rossi G, Colafarina S, Guido M, Cecconi S, Poma AMG. The Impact of Metal Nanoparticles on Female Reproductive System: Risks and Opportunities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13748. [PMID: 36360633 PMCID: PMC9655349 DOI: 10.3390/ijerph192113748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and our bodily systems are well adapted to protect us from these potentially harmful external agents. However, technological advancement has dramatically increased the production of nanometer-sized particles or nanoparticles (NPs), and many epidemiological studies have confirmed a correlation between NP exposure and the onset of cardiovascular diseases and various cancers. Among the adverse effects on human health, in recent years, potential hazards of nanomaterials on female reproductive organs have received increasing concern. Several animal and human studies have shown that NPs can translocate to the ovary, uterus, and placenta, thus negatively impacting female reproductive potential and fetal health. However, NPs are increasingly being used for therapeutic purposes as tools capable of modifying the natural history of degenerative diseases. Here we briefly summarize the toxic effects of few but widely diffused NPs on female fertility and also the use of nanotechnologies as a new molecular approach for either specific pathological conditions, such as ovarian cancer and infertility, or the cryopreservation of gametes and embryos.
Collapse
|
9
|
Lee DY, Lee SY, Yun SH, Jeong JW, Kim JH, Kim HW, Choi JS, Kim GD, Joo ST, Choi I, Hur SJ. Review of the Current Research on Fetal Bovine Serum and the
Development of Cultured Meat. Food Sci Anim Resour 2022; 42:775-799. [PMID: 36133630 PMCID: PMC9478980 DOI: 10.5851/kosfa.2022.e46] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to summarize studies that investigate blood and the
main components of fetal bovine serum (FBS) in vertebrates, including major
livestock, and review the current research on commercializing cultured meat.
Detailed research on FBS is still lacking; however, some studies have shown that
FBS consists of proteins, carbohydrates, growth factors, cytokines, fats,
vitamins, minerals, hormones, non-protein nitrogen, and inorganic compounds.
However, there are few studies on how the composition of FBS differs from blood
or serum composition in adult animals, which is probably one of the main reasons
for not successfully replacing FBS. Moreover, recent studies on the development
of FBS replacers and serum-free media have shown that it is difficult to
conclude whether FBS has been completely replaced or serum-free media have been
developed successfully. Our review of the industrialization of cultured meat
reveals that many basic studies on the development of cultured meat have been
conducted, but it is assumed that the study to reduce or replace ingredients
derived from fetuses such as FBS has not yet been actively developed. Therefore,
developing inexpensive and edible media is necessary for the successful
industrialization of cultured meat.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyun Woo Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Gap-Don Kim
- Graduate School of International
Agricultural Technology, Institutes of Green Bio Science and Technology,
Seoul National University, Pyeongchang 25354, Korea
| | - Seon Tea Joo
- Division of Applied Life Science (BK21
Four), Institute of Agriculture & Life Science, Gyeongsang National
University, Jinju 52828, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
- Corresponding author: Sun Jin
Hur, Department of Animal Science and Technology, Chung-Ang University, Anseong
17546, Korea, Tel: +82-31-670-4673, Fax: +82-31-670-3108, E-mail:
| |
Collapse
|
10
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
11
|
The use of insulin-transferrin-selenium (ITS), and folic acid on individual in vitro embryo culture systems in cattle. Theriogenology 2022; 184:153-161. [DOI: 10.1016/j.theriogenology.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
|
12
|
PTEN expression in human cumulus cells is associated with embryo development competence. ZYGOTE 2022; 30:611-618. [DOI: 10.1017/s096719942200003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary
Embryo quality determines the success of in vitro fertilization and embryo transfer (IVF-ET) treatment. Biomarkers for the evaluation of embryo quality have some limitations. Apoptosis in cumulus cells (CCs) is important for ovarian function. PTEN (phosphatase and tensin homolog) is a well known tumour suppressor gene that functions as a mediator of apoptosis and is crucial for mammalian reproduction. In the present study, we analyzed the expression level of PTEN in human CCs and aimed to investigate its association with embryo developmental competence in IVF treatment cycles. The PTEN mRNA level in CCs was measured using real-time fluorescence quantitative PCR. The association of the differential expression of PTEN with embryo quality was analyzed. Our data showed that PTEN mRNA levels were significantly decreased in CCs surrounding mature oocytes compared with immature oocytes. Similar changes were found in the analysis of fertilization and blastocyst formation. The speculation that the measurement of PTEN mRNA levels in human CCs would provide a useful tool for selecting oocytes with greater chances to implant into the uterus needs to be further verified through single-embryo transfer in the future. The proapoptotic mechanism of PTEN in human reproduction needs to be further studied.
Collapse
|
13
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
14
|
Zhang M, Zhang S, Zhai Y, Han Y, Huang R, An X, Dai X, Li Z. Cycloleucine negatively regulates porcine oocyte maturation and embryo development by modulating N6-methyladenosine and histone modifications. Theriogenology 2021; 179:128-140. [PMID: 34864563 DOI: 10.1016/j.theriogenology.2021.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Maturation of oocytes and early embryo development are regulated precisely by numerous factors at transcriptional and posttranslational levels through precise mechanisms. N6-methyladenosine (m6A) is the most common modification in mRNA which regulates RNA metabolism and gene expression. However, the role of RNA m6A on porcine oocyte maturation and early embryogenesis is largely unknown. Here, we found that oocytes treated with cycloleucine (CL), an RNA m6A inhibitor, express impaired cumulus expansion, increased production of reactive oxygen species (ROS) in the mitochondria, and delayed maturation of oocytes by disrupting spindle organization and chromosome alignment. Also, CL halted the development of embryos at the 4-cell stage and resulted in low-quality blastocysts. Furthermore, CL treatment decreased the RNA m6A, H3K4me3, and H3K9me3 levels, but increased the acetylation level of H4K16 during parthenogenetic embryonic development in pigs. Single-cell RNA-seq (scRNA-seq) analysis further revealed that CL treatment dramatically up-regulated the expression of metabolism-related genes (SLC16A1, and MAIG3 etc.) and maternal related genes, including BTG4, WEE2, and BMP15 among others, at the blastocyst stage. Taken together, inhibition of RNA m6A by CL impaired meiosis of oocytes and early embryonic development of porcine via RNA m6A methylation, histone modifications, and altering the expression of metabolism-related genes in blastocysts.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Yu Han
- College of Veterinary Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Rong Huang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
15
|
Liu H, Zhou D, Liu C, Zhuan Q, Luo Y, Mo X, Fu X, Hou Y. The Calcium-Sensing Receptor Is Involved in Follicle-Stimulating Hormone-Induced Cumulus Expansion in in vitro Cultured Porcine Cumulus-Oocyte Complexes. Front Cell Dev Biol 2021; 9:625036. [PMID: 34095106 PMCID: PMC8173154 DOI: 10.3389/fcell.2021.625036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Calcium-Sensing Receptor (CASR) is a G protein-coupled receptor of the C family that reportedly promotes maturation of porcine oocytes. However, its role in cumulus expansion of cumulus-oocyte complexes (COCs) is not well known. This study was conducted to determine the role of CASR and potential mechanisms involved during in vitro maturation (IVM) of porcine COCs. After culture of COCs in follicle-stimulating hormone (FSH)-supplement maturation medium for 24 h, the time of breakdown of the germinal vesicle (GVBD), indicative of initiation of meiotic maturation, resulted in an increased (p < 0.05) CASR mRNA expression level in cumulus cells. Moreover, IVM of COCs in 10 μM of the CASR agonist NPS R-568 promoted (p < 0.05) cumulus expansion but only in FSH-containing medium. Conversely, 20 μM of the CASR inhibitor NPS2390 precluded cumulus expansion. We next tested the effect of the CASR agonist/inhibitor on the expression of cumulus expansion-related genes. The CASR agonist significantly upregulated the expression of hyaluronan acid synthase 2 (HAS2), whereas the CASR inhibitor downregulated the expression of all HAS2, prostaglandin-endoperoxide synthase 2 (PTGS2), and tumor necrosis factor a-induced protein 6 (TNFAIP6). Altogether, these results suggest that CASR activity is involved in FSH-stimulated porcine cumulus expansion.
Collapse
Affiliation(s)
- Huage Liu
- Institute of Reproductive Medicine, Nantong University, Nantong, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianhong Mo
- College of Life Sciences, Chifeng University, Chifeng, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Zhang J, Deng Y, Chen W, Zi Y, Shi D, Lu F. Theca cell-conditioned medium added to in vitro maturation enhances embryo developmental competence of buffalo (Bubalus bubalis) oocytes after parthenogenic activation. Reprod Domest Anim 2020; 55:1501-1510. [PMID: 32767798 DOI: 10.1111/rda.13799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Theca cells (TCs) play a key role in follicular growth and atresia. TCs synthesize androgens that act as substrate for granulosa cells (GCs) aromatization to estrogens needed for oocyte maturation. However, the effects of TCs in the form of conditioned medium on in vitro maturation (IVM) and developmental competence of buffalo oocytes remain unclear. In the present study, we examined the impacts of TC-conditioned medium (TCCM) on maturation efficiency and embryo development of buffalo oocytes after parthenogenic activation (PA). Our results showed that TCCM that was collected on day 2 and added to IVM medium at a 20% proportional level (2 days & 20%) exerted no significant effect on IVM rate (43.06% vs. 44.71%), but significantly (p < .05) enhanced embryo development (oocyte cleavage, 80.93% vs. 69.66%; blastocyst formation, 39.85% vs. 32.84%) of buffalo oocytes after PA compared with the control group. However, monolayer TC significantly (p < .05) promoted both maturation efficiency (48.84% vs. 44.53%) and embryo development (oocyte cleavage, 80.39% vs. 69.32%; blastocyst formation, 35.38% vs. 29.25%) of buffalo oocytes after PA compared to that in the control group. Furthermore, TCs secreted some testosterone into the conditioned medium, which significantly (p < .05) promoted the expression levels of oestrogen synthesis-related genes (CYP11A1, CYP19A1 and 17β-HSD) in buffalo cumulus-oocyte complexes (COCs). Our study indicated that TCCM (2 days & 20%) did not significantly affect IVM efficiency, but enhanced embryo developmental competence of oocytes after PA principally by stimulating the secretion of testosterone and facilitating estradiol synthesis of buffalo COCs.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Weili Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yonghong Zi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
17
|
In vitro maturation on an agarose matrix improves the developmental competence of porcine oocytes. Theriogenology 2020; 157:7-17. [PMID: 32768724 DOI: 10.1016/j.theriogenology.2020.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
Oocytes in vivo generally mature in ovarian follicles that are soft, whereas oocytes that mature in vitro are on the hard surface of culture dishes. Embryonic ontogeny through organogenesis has greater ability in in vivo matured oocytes than it does in in vitro matured oocytes, indicating the importance of a soft culture matrix. In this study, we report the effect of using an agarose matrix as a culture substrate on the development of pig oocytes derived from medium antral follicles. The cumulus-oocyte complexes (COCs) retrieved from medium antral follicles were matured on noncoated (control) culture dishes or dishes coated with 1% and 2% (w/v) agarose matrices. Subsequently, the effect of the soft culture matrix on the developmental competence of porcine oocytes was assessed by analyzing cumulus expansion, blastocyst formation after parthenogenetic activation (PA), gene expression levels (ACTN4, BMP15, BAX, HIF1A, PFKP and VEGFA), TUNEL indices, BMP15 protein expression levels, cortical granule (CG) distribution, and intraoocyte ATP levels. In vitro maturation (IVM) of pig COCs using a 1% (w/v) agarose matrix resulted in significantly higher blastocyst formation, cumulus expansion, gene expression of BMP15, HIF1A and VEGFA, protein expression of BMP15, and intraoocyte ATP levels, and there was significantly reduced expression of a pro-apoptotic gene and ACTN4 gene and a reduction in TUNEL indices. These results demonstrate that the developmental competence of porcine oocytes can be effectively improved through IVM on a soft culture matrix made of agarose over what is observed using hard culture dishes.
Collapse
|
18
|
Yin C, Liu J, Chang Z, He B, Yang Y, Zhao R. Heat exposure impairs porcine oocyte quality with suppressed actin expression in cumulus cells and disrupted F-actin formation in transzonal projections. J Anim Sci Biotechnol 2020; 11:71. [PMID: 32647569 PMCID: PMC7336674 DOI: 10.1186/s40104-020-00477-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Transzonal projections (TZPs) constitute a structural basis for the communication between the oocyte and its surrounding cumulus cells (CCs), which play critical roles in promoting the oocyte maturation. Previously we found that heat stress (HS) causes loss of TZPs in porcine cumulus-oocyte complexes (COCs) with decreased density of filamentous actin (F-actin). However, the time-course responses of F-actin and its monomeric actins (β-actin and γ-actin) during the in vitro maturation of oocytes remain unclear. Results In this study, excised porcine ovaries were exposed to HS at 41.5 °C for 1 h before COCs were isolated and matured in vitro for 44 h. HS significantly reduced oocyte quality, characterized by impaired cumulus expansion, delayed meiotic resumption and lower survival rate and polar body extrusion rate, as well as decreased expression of mitochondrial DNA-encoded genes and elevated mitochondrial reactive oxygen species concentration. Expression of β-actin and γ-actin in CCs increased gradually with oocytes maturation, which was significantly reduced in HS group, especially at 24 h and/or 44 h of in vitro maturation. By contrast, the number of TZPs and the fluorescence intensity of F-actin in zona pellucida decreased gradually during oocytes maturation, which were significantly reduced by HS at 24 h of in vitro maturation. Moreover, colocalization analyses revealed both β-actin and γ-actin contribute to the F-actin formation in porcine TZPs, and the colocalization of F-actin with GJ protein connexin 45 was significantly reduced in heat-exposed COCs. Conclusions The results indicate that the suppression of actin expressions in CCs, which may lead to the F-actin unstabilization in TZPs, will subsequently contribute to the compromised quality of oocytes under HS.
Collapse
Affiliation(s)
- Chao Yin
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China
| | - Zhanglin Chang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China
| | - Bin He
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, Jiangsu China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095 China
| |
Collapse
|
19
|
Fontana J, Martínková S, Petr J, Žalmanová T, Trnka J. Metabolic cooperation in the ovarian follicle. Physiol Res 2019; 69:33-48. [PMID: 31854191 DOI: 10.33549/physiolres.934233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
Collapse
Affiliation(s)
- J Fontana
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Lowe JL, Bathgate R, Grupen CG. Effect of carbohydrates on lipid metabolism during porcine oocyte IVM. Reprod Fertil Dev 2019; 31:557-569. [PMID: 31039975 DOI: 10.1071/rd18043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Porcine oocytes contain a large amount of endogenous lipid, which is thought to function as an intracellular source of energy. The aim of this study was to determine the effects of stimulating or inhibiting lipid metabolism using l-carnitine or etomoxir respectively on the IVM of porcine oocytes cultured in media of varying carbohydrate composition. In the presence of pyruvate and lactate, exclusion of glucose inhibited oocyte nuclear and cytoplasmic maturation compared with oocytes matured in media containing low (1.5mM) and high (4.0mM) concentrations of glucose. In the absence of pyruvate and lactate in low-glucose medium only, a greater proportion of l-carnitine-treated oocytes progressed to the MII stage compared with untreated oocytes. The inclusion of pyruvate and lactate significantly altered the distribution of cytoplasmic lipid droplets and elevated the ATP content of oocytes, whereas the l-carnitine treatment did not. Further, the inhibitory effect of etomoxir on nuclear maturation was decreased in high- compared with low-glucose medium. The results indicate that carbohydrate substrates are absolutely necessary for effective porcine oocyte maturation, and that l-carnitine supplementation can only partially compensate for deficiencies in carbohydrate provision.
Collapse
Affiliation(s)
- Jenna L Lowe
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Roslyn Bathgate
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
21
|
Elevated peritoneal fluid ceramides in human endometriosis-associated infertility and their effects on mouse oocyte maturation. Fertil Steril 2019; 110:767-777.e5. [PMID: 30196975 DOI: 10.1016/j.fertnstert.2018.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the peritoneal fluid (PF) sphingolipid profile in endometriosis-associated infertility (EAI), and to assess the plausible functional role(s) of ceramides in oocyte maturation potential. DESIGN Retrospective case-control study and in vitro mouse oocyte study. SETTING University-affiliated hospital and university laboratory. SUBJECTS Twenty-seven infertile patients diagnosed with endometriosis and 20 infertile patients who did not have endometriosis; BALB/c female mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) PF sphingolipid concentrations. Number of metaphase II (MII) mouse oocytes. RESULT(S) Liquid chromatography-tandem mass spectrometry revealed 11 significantly elevated PF sphingolipids in infertile women with severe endometriosis compared with infertile women without endometriosis (change >50%, false discovery rate ≤10%). Logistic regression analysis identified three very-long-chain ceramides potentially associated with EAI. Functional studies revealed that very-long-chain ceramides may compromise or induce murine MII oocyte maturation. The oocyte maturation effects induced by the very long-chain ceramides were triggered by alterations in mitochondrial superoxide production in a concentration-dependent manner. Scavenging of mitochondrial superoxide reversed the maturation effects of C24:0 ceramide. CONCLUSION(S) EAI is associated with accumulation of PF very-long-chain ceramides. Mouse studies demonstrated how ceramides affect MII oocyte maturation, mediating through mitochondrial superoxide. These results provide an opportunity for direct functional readout of pathophysiology in EAI, and future therapies targeted at this sphingolipid metabolism may be harnessed for improved oocyte maturation.
Collapse
|
22
|
Moussa M, Li MQ, Zheng HY, Yang CY, Yan SF, Yu NQ, Huang JX, Shang JH. Buffalo oocyte-secreted factors promote cumulus cells apoptosis and the rate of cGMP production but not steroidogenesis. Reprod Domest Anim 2018; 53:1523-1529. [PMID: 30058188 DOI: 10.1111/rda.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
The objectives of this study were to investigate the effect of buffalo oocyte-secreted factors (OSFs) on cumulus cells (CCs) functions, apoptosis and cGMP generation, and whether the direct contact between oocyte and CCs is essential for oocyte-mediated regulation of CCs functions. Buffalo CCs were cultured during IVM within three groups: (a) intact cumulus-oocyte complexes (COCs), (b) CCs cocultured with denuded oocytes (DOs) (CCs + DOs) and (c) CCs monolayer cultured alone (CCsM). After 24 hr of IVM, CCs were harvested for evaluation of the relative mRNA abundance of the genes encoding gap junction (GJA1), glycolysis (PFKP and LDHA), apoptosis (CASPASE-3 and BCL-2) and steroidogenesis (ER-β and PGR) by QRT-PCR, and CASPASE-3 proteins, using western blot. Intracellular cGMP content was also assessed by ELISA. Results showed that the relative abundance of LDHA, PFKP and BCL-2 significantly increased (p < 0.05) in COCs, whereas GJA1 and CASPASE-3 exhibited lower expression (p < 0.05) compared to CCs + DOs and CCsM groups. However, the expression levels of CASPASE-3, both mRNA and protein, were significantly (p < 0.05) downregulated in CCs + DOs compared to CCsM. There was no significant difference in the expression level of PGR and ER-β between the groups. The intracellular content of cGMP was notably (p < 0.05) higher in COCs compared to CCs + DOs and CCsM groups. In conclusion, this study demonstrated, for the first time, that buffalo OSFs protect CCs against apoptosis and stimulate their cGMP production; however, the regulation of cumulus glycolysis and gap junction is confined to those in close contact with the oocyte. Neither OSFs from COCs nor those from DOs have any effect on CCs steroidogenesis.
Collapse
Affiliation(s)
- Mahmoud Moussa
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Meng-Qi Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Sheng-Fei Yan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Nong-Qi Yu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Jia-Xiang Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
23
|
Appeltant R, Somfai T, Santos ECS, Dang-Nguyen TQ, Nagai T, Kikuchi K. Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation. Reprod Fertil Dev 2018; 29:2419-2429. [PMID: 28502309 DOI: 10.1071/rd16386] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/19/2017] [Indexed: 11/23/2022] Open
Abstract
Although offspring have been produced from porcine oocytes vitrified at the germinal vesicle (GV) stage, the rate of embryo development remains low. In the present study, nuclear morphology and progression, cumulus expansion, transzonal projections (TZPs), ATP and glutathione (GSH) levels were compared between vitrified cumulus-oocyte complexes (COCs) and control COCs (no cryoprotectant treatment and no cooling), as well as a toxicity control (no cooling). Vitrification was performed with 17.5% (v/v) ethylene glycol and 17.5% (v/v) propylene glycol. Vitrification at the GV stage caused premature meiotic progression, reflected by earlier GV breakdown and untimely attainment of the MII stage. However, cytoplasmic maturation, investigated by measurement of ATP and GSH levels, as well as cumulus expansion, proceeded normally despite detectable damage to TZPs in vitrified COCs. Moreover, treatment with cryoprotectants caused fragmentation of nucleolus precursor bodies and morphological changes in F-actin from which oocytes were able to recover during subsequent IVM culture. Reduced developmental competence may be explained by premature nuclear maturation leading to oocyte aging, although other mechanisms, such as initiation of apoptosis and reduction of cytoplasmic mRNA, can also be considered. Further research will be required to clarify the presence and effects of these phenomena during the vitrification of immature COCs.
Collapse
Affiliation(s)
- Ruth Appeltant
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Tamás Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - Elisa C S Santos
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - Thanh Quang Dang-Nguyen
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Takashi Nagai
- Department of Research Planning and Coordination, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
24
|
Despite the donor's age, human adipose-derived stem cells enhance the maturation and development rates of porcine oocytes in a co-culture system. Theriogenology 2018; 115:57-64. [DOI: 10.1016/j.theriogenology.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
25
|
An L, Liu J, Du Y, Liu Z, Zhang F, Liu Y, Zhu X, Ling P, Chang S, Hu Y, Li Y, Xu B, Yang L, Xue F, Presicce GA, Du F. Synergistic effect of cysteamine, leukemia inhibitory factor, and Y27632 on goat oocyte maturation and embryo development in vitro. Theriogenology 2018; 108:56-62. [DOI: 10.1016/j.theriogenology.2017.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
26
|
Guo Z, Islam MS, Liu D, Liu G, Lv L, Yang Y, Fu B, Wang L, Liu Z, He H, Wu H. Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro. Reprod Domest Anim 2017; 53:3-10. [DOI: 10.1111/rda.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Z Guo
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation; Ministry of Agriculture; Beijing China
| | - MS Islam
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
- Department of Animal Production and Management; Sher-e-Bangla Agricultural University; Sher-e-Bangla Nagar, Dhaka Bangladesh
| | - D Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
- Wood Science Research Institute of Heilongjiang Academy of Forestry; Harbin China
| | - G Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| | - L Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry; Harbin China
| | - Y Yang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
- Northeast Agricultural University; Harbin China
| | - B Fu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| | - L Wang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| | - Z Liu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| | - H He
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| | - H Wu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme; Animal Husbandry Research Institute; Harbin China
| |
Collapse
|
27
|
Kansaku K, Itami N, Kawahara-Miki R, Shirasuna K, Kuwayama T, Iwata H. Differential effects of mitochondrial inhibitors on porcine granulosa cells and oocytes. Theriogenology 2017; 103:98-103. [PMID: 28779614 DOI: 10.1016/j.theriogenology.2017.07.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/20/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
Oocytes and granulosa cells rely primarily on mitochondrial respiration and glycolysis for energy production, respectively. The present study examined the effect of mitochondrial inhibitors on the ATP contents of oocytes and granulosa cells. Cumulus cell-oocyte complexes (COCs) and granulosa cells (GCs) were collected from the antral follicles of porcine ovaries. Treatment of denuded oocytes with either carbonyl cyanide m-chlorophenyl hydrazine (CCCP), antimycin, or oligomycin significantly reduced ATP content to very low levels (CCCP, 0.12 pM; antimycin, 0.07 pM; and oligomycin, 0.25 pM; P < 0.05), whereas treatment with a glycolysis inhibitor (bromopyruvic acid, BA) had no effect. Conversely, the ATP content of granulosa cells was significantly reduced by treatment with the glycolysis inhibitor but was not affected by the mitochondrial inhibitors (ATP/10,000 cells; control, 1.78 pM and BA, 0.32 pM; P < 0.05). Reactive oxygen species (ROS) generation after CCCP treatment was greater in oocytes (1.6-fold) than that seen in granulosa cells (1.08-fold). Oocytes surrounded by granulosa cells had higher ATP levels than denuded oocytes. Treatment of COCs with CCCP reduced, but did not completely abolish, ATP content in oocytes (control, 3.15 pM and CCCP, 0.52 pM; P < 0.05), whereas treatment with CCCP plus a gap junction inhibitor, 18α-glycyrrhetinic acid, and CCCP decreased the ATP content to even lower levels (0.29 pM; P < 0.05). These results suggest that granulosa cells are dependent on glycolysis and provide energy to oocytes through gap junctions, even after treatment with CCCP.
Collapse
Affiliation(s)
- Kazuki Kansaku
- Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Nobuhiko Itami
- Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | | | - Koumei Shirasuna
- Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Takehito Kuwayama
- Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Funako 1737, Atsugi 243-0034, Japan.
| |
Collapse
|
28
|
Budna J, Rybska M, Ciesiółka S, Bryja A, Borys S, Kranc W, Wojtanowicz-Markiewicz K, Jeseta M, Sumelka E, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach. Reprod Biol Endocrinol 2017; 15:43. [PMID: 28576120 PMCID: PMC5457624 DOI: 10.1186/s12958-017-0261-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The full maturational capability of mammalian oocytes is accompanied by nuclear and cytoplasmic modifications, which are associated with proliferation and differentiation of surrounding cumulus cells. These events are regulated on molecular level by the expression of target genes involved in signal transduction pathways crucial for folliculogenesis and oogenesis. Transforming growth factor beta signaling includes several molecules that are involved in the regulation of oogenesis and embryo growth, including bone morphogenetic protein (BMP). However, the BMP-related gene expression profile in oocytes at different maturational stages requires further investigation. METHODS Oocytes were isolated from pubertal crossbred Landrace gilts follicles, selected with a use of BCB staining test and analyzed before and after in vitro maturation. Gene expression profiles were examined using an Affymetrix microarray approach and validated by RT-qPCR. Database for Annotation, Visualization, and Integrated Discovery (DAVID) software was used for the extraction of the genes belonging to a BMP-signaling pathway ontology group. RESULTS The assay revealed 12,258 different transcripts in porcine oocytes, among which 379 genes were down-regulated and 40 were up-regulated. The DAVID database indicated a "BMP signaling pathway" ontology group, which was significantly regulated in both groups of oocytes. We discovered five up-regulated genes in oocytes before versus after in vitro maturation (IVM): chordin-like 1 (CHRDL1), follistatin (FST), transforming growth factor-beta receptor-type III (TGFβR3), decapentaplegic homolog 4 (SMAD4), and inhibitor of DNA binding 1 (ID1). CONCLUSIONS Increased expression of CHRDL1, FST, TGFβR3, SMAD4, and ID1 transcripts before IVM suggested a subordinate role of the BMP signaling pathway in porcine oocyte maturational competence. Conversely, it is postulated that these genes are involved in early stages of folliculogenesis and oogenesis regulation in pigs, since in oocytes before IVM increased expression was observed.
Collapse
Affiliation(s)
- Joanna Budna
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Marta Rybska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Sylwia Ciesiółka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Artur Bryja
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Sylwia Borys
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Wiesława Kranc
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Katarzyna Wojtanowicz-Markiewicz
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Michal Jeseta
- 0000 0004 0609 2751grid.412554.3Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilnitrh 11, 602 00 Brno, Czech Republic
| | - Ewa Sumelka
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Dorota Bukowska
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Paweł Antosik
- 0000 0001 2157 4669grid.410688.3Institute of Veterinary Sciences, Poznan University of Life Sciences, Wolynska 35 St, 60–637 Poznan, Poland
| | - Klaus P. Brüssow
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Małgorzata Bruska
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| | - Michał Nowicki
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Maciej Zabel
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
| | - Bartosz Kempisty
- 0000 0001 2205 0971grid.22254.33Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., 60–781 Poznan, Poland
- 0000 0001 2205 0971grid.22254.33Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St, 60–781 Poznan, Poland
| |
Collapse
|
29
|
DMBA acts on cumulus cells to desynchronize nuclear and cytoplasmic maturation of pig oocytes. Sci Rep 2017; 7:1687. [PMID: 28490774 PMCID: PMC5431913 DOI: 10.1038/s41598-017-01870-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 11/08/2022] Open
Abstract
As an environmental pollutant and carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA) can destroy ovarian follicles at all developmental stages in rodents. However, the underlying molecular mechanism remains obscure. In the present study, we aim to address how DMBA affects the in vitro maturation and development of porcine oocytes. We discovered that for 20 μM DMBA-treated cumulus-oocyte complexes (COCs), the rate of oocyte germinal vesicle breakdown (GVBD) was significantly altered, and the extrusion rate of first polar body was increased. Moreover, oocytes from 20 μM DMBA-treated COCs had significant down-regulation of H3K9me3 and H3K27me3, up-regulation of H3K36me3, higher incidence of DNA double strand breaks (DSBs) and early apoptosis. In striking contrast, none of these changes happened to 20 μM DMBA-treated cumulus-denuded oocytes (CDOs). Furthermore, 20 μM DMBA treatment increased the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (Δ Ψm), and inhibited developmental competence for oocytes from both COC and CDO groups. Collectively, our data indicate DMBA could act on cumulus cells via the gap junction to disturb the synchronization of nuclear and ooplasmic maturation, and reduce the developmental competence of oocytes.
Collapse
|
30
|
Appeltant R, Beek J, Maes D, Bijttebier J, Van Steendam K, Nauwynck H, Van Soom A. Hampered cumulus expansion of porcine cumulus-oocyte complexes by excessive presence of alpha 2 -macroglobulin is likely mediated via inhibition of zinc-dependent metalloproteases. Anim Sci J 2017; 88:1279-1290. [PMID: 28124491 DOI: 10.1111/asj.12767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/02/2016] [Accepted: 10/28/2016] [Indexed: 01/27/2023]
Abstract
In vitro maturation (IVM) in serum causes hampered expansion of porcine cumulus-oocyte complexes (COCs) due to excessive alpha2 -macroglobulin (A2M). This study investigated two hypotheses that could explain the effect of A2M: (i) binding of epidermal growth factor (EGF) to A2M, followed by its decreased availability; and (ii) inhibition of zinc-dependent metalloproteases. Cumulus expansion was evaluated based on the diameter of the COCs, the proportion of COCs participating in a floating cloud and the proportion of COCs with loss of cumulus cells. The first hypothesis of decreased EGF availability was tested by increasing the EGF concentration (20 and 50 ng/mL vs. 10 ng/mL), but was not confirmed because cumulus expansion did not improve. To verify the second hypothesis of inhibited zinc-dependent metalloproteases, the effect of tissue inhibitor of metalloproteases-3 (TIMP-3) on cumulus expansion during IVM with and without A2M was investigated. To immuno-neutralize A2M, serum was pre-incubated with A2M antibodies. Impaired cumulus expansion because of TIMP-3 could only be observed during IVM in 10% of serum with A2M antibodies. No effect of TIMP-3 was observed in medium without A2M antibodies. These results indicate that A2M and TIMP-3 share a common target, a zinc-dependent metalloprotease. Future research is directed toward the identification of the protease involved.
Collapse
Affiliation(s)
- Ruth Appeltant
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Josine Beek
- MSD Animal Health Belgium, Brussels, Belgium
| | - Dominiek Maes
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jo Bijttebier
- Social Science Unit, Institute for Agricultural and Fisheries Research, Merelbeke, Belgium
| | - Katleen Van Steendam
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics, and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
31
|
Li X, Wang YK, Song ZQ, Du ZQ, Yang CX. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes. PLoS One 2016; 11:e0158074. [PMID: 27348312 PMCID: PMC4922549 DOI: 10.1371/journal.pone.0158074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
Collapse
Affiliation(s)
- Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| |
Collapse
|
32
|
Appeltant R, Somfai T, Maes D, VAN Soom A, Kikuchi K. Porcine oocyte maturation in vitro: role of cAMP and oocyte-secreted factors - A practical approach. J Reprod Dev 2016; 62:439-449. [PMID: 27349308 PMCID: PMC5081730 DOI: 10.1262/jrd.2016-016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polyspermy or the penetration of more than one sperm cell remains a problem during porcine in vitro fertilization (IVF). After in
vitro culture of porcine zygotes, only a low percentage of blastocysts develop and their quality is inferior to that of in vivo
derived blastocysts. It is unknown whether the cytoplasmic maturation of the oocyte is sufficiently sustained in current in vitro maturation
(IVM) procedures. The complex interplay between oocyte and cumulus cells during IVM is a key factor in this process. By focusing on this bidirectional
communication, it is possible to control the coordination of cumulus expansion, and nuclear and cytoplasmic maturation during IVM to some extent. Therefore,
this review focuses on the regulatory mechanisms between oocytes and cumulus cells to further the development of new in vitro embryo production
(IVP) procedures, resulting in less polyspermy and improved oocyte developmental potential. Specifically, we focused on the involvement of cAMP in maturation
regulation and function of oocyte-secreted factors (OSFs) in the bidirectional regulatory loop between oocyte and cumulus cells. Our studies suggest that
maintaining high cAMP levels in the oocyte during the first half of IVM sustained improved oocyte maturation, resulting in an enhanced response after IVF and
cumulus matrix disassembly. Recent research indicated that the addition of OSFs during IVM enhanced the developmental competence of small follicle-derived
oocytes, which was stimulated by epidermal growth factor (EGF) via developing EGF-receptor signaling.
Collapse
Affiliation(s)
- Ruth Appeltant
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
33
|
Effect of Acrylamide on Oocyte Nuclear Maturation and Cumulus Cells Apoptosis in Mouse In Vitro. PLoS One 2015; 10:e0135818. [PMID: 26275143 PMCID: PMC4537141 DOI: 10.1371/journal.pone.0135818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.
Collapse
|
34
|
Appeltant R, Somfai T, Kikuchi K, Maes D, Van Soom A. Influence of co-culture with denuded oocytes during in vitro maturation on fertilization and developmental competence of cumulus-enclosed porcine oocytes in a defined system. Anim Sci J 2015; 87:503-10. [PMID: 26249727 DOI: 10.1111/asj.12459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/06/2015] [Indexed: 12/18/2022]
Abstract
Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system.
Collapse
Affiliation(s)
- Ruth Appeltant
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tamás Somfai
- National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
35
|
Localization and quantitative analysis of Cx43 in porcine oocytes during in vitro maturation. ZYGOTE 2015; 24:364-70. [DOI: 10.1017/s0967199415000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SummaryMany studies of the main gap junction protein, Cx43, have been conducted in porcine oocyte research, but they have been limited to investigations of cumulus–oocyte complexes (COCs). In this study, we verified Cx43 not in COCs, but in porcine oocytes during maturation, and conducted a quantitative time course analysis. The location and dynamics of Cx43 were examined by immunocytochemistry and western blotting, respectively. COCs were cultured in NCSU23 medium and processed for immunocytochemistry and western blotting at 0, 14, 28, and 42 h after denuding. A Cx43 signal was detected on oolemmas, transzonal projections and the surface of zona pellucidae. Western blotting showed that Cx43 band density increased from 0 to 14 h, and gradually decreased thereafter. Our results clarified that Cx43 is localized in the ooplasmic membrane through zona pellucidae and its level changes over time during culture in porcine oocytes.
Collapse
|