1
|
Larbi A, Li C, Quan G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim Reprod Sci 2024; 263:107441. [PMID: 38412764 DOI: 10.1016/j.anireprosci.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
This comprehensive review critically examines the application of proteomics in understanding sperm cryoinjury mechanisms in livestock animals, in the context of the widespread use of semen cryopreservation for genetic conservation. Despite its global adoption, cryopreservation often detrimentally affects sperm quality and fertility due to cryoinjuries. These injuries primarily arise from ice crystal formation, osmotic shifts, oxidative stress, and the reorganization of membrane proteins and lipids during freezing and thawing, leading to premature capacitation-like changes. Moreover, the cryopreservation process induces proteome remodeling in mammalian sperm. Although there have been technological advances in semen cryopreservation, the precise mechanisms of mammalian sperm cryoinjury remain elusive. This review offers an in-depth exploration of how recent advancements in proteomic technologies have enabled a detailed investigation into these molecular disruptions. It presents an analysis of protein-level alterations post-thaw and their impact on sperm viability and functionality. Additionally, it discusses the role of proteomics in refining cryopreservation techniques to mitigate cryoinjury and enhance reproductive outcomes in livestock. This work synthesizes current knowledge, highlights gaps, and suggests directions for future research in animal reproductive science and biotechnology.
Collapse
Affiliation(s)
- Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
2
|
Iskandar H, Andersson G, Sonjaya H, Arifiantini RI, Said S, Hasbi H, Maulana T, Baharun A. Protein Identification of Seminal Plasma in Bali Bull ( Bos javanicus). Animals (Basel) 2023; 13:514. [PMID: 36766403 PMCID: PMC9913395 DOI: 10.3390/ani13030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to identify seminal plasma proteins in Bali bull and their potential as biomarkers of fertility. Semen was collected from 10 bulls aged 5-10 years using an artificial vagina. Fresh semen was then centrifuged (3000× g for 30 min). The supernatant was put into straws and stored in liquid nitrogen. The semen plasma protein concentration was determined using the Bradford method, and the protein was characterized using 1D-SDS-PAGE. Coomassie Brilliant Blue (CBB) was used to color the gel, and the molecular weight of the protein was determined using PM2700. A total of 94 proteins were identified in the seminal plasma of Bali bulls analyzed using LC-MS/MS (liquid chromatography-mass spectrometry). Proteins spermadhesin 1 (SPADH1), C-type natriuretic peptide (NPPC), clusterin (CLU), apoliprotein A-II (APOA2), inositol-3-phosphate synthase 1 (ISYNA1), and sulfhydryl oxidase 1 (QSOX1) were identified as important for fertility in Bos javanicus. These proteins may prove to be important biomarkers of fertility in Bali bulls. These proteins are important for reproductive function, which includes spermatozoa motility, capacitation, and acrosome reactions. This study provides new information about the protein content in seminal plasma in Bali bulls. The LC-MS/MS-based proteome approach that we applied in this study obtained 94 proteins. The identification of these seminal plasma proteins of Bali bulls and their potential as fertility biomarkers may have an impact on the success of future artificial insemination (AI).
Collapse
Affiliation(s)
- Hikmayani Iskandar
- Agricultural Science Study Program, Graduate School Hasanuddin University, Makassar 90245, Indonesia;
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Herry Sonjaya
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia;
| | - Syahruddin Said
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Hasbi Hasbi
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Tulus Maulana
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Abdullah Baharun
- Animal Science Program, Faculty of Agriculture, Djuanda University, Bogor 16720, Indonesia;
| |
Collapse
|
3
|
Griffin RA, Swegen A, Baker MA, Ogle RA, Smith N, Aitken RJ, Skerrett-Byrne DA, Fair S, Gibb Z. Proteomic analysis of spermatozoa reveals caseins play a pivotal role in preventing short-term periods of subfertility in stallions. Biol Reprod 2022; 106:741-755. [DOI: 10.1093/biolre/ioab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Stallions experience transient fluctuations in fertility throughout the breeding season. Considering pregnancy diagnoses cannot be ascertained until ~14 days post-breeding, the timely detection of decreases in stallion fertility would enhance industry economic and welfare outcomes. Therefore, this study aimed to identify the proteomic signatures reflective of short-term fertility fluctuations, and to determine the biological mechanisms governing such differences. Using LC–MS/MS, we compared the proteomic profile of semen samples collected from commercially “fertile” stallions, during high- and low-fertility periods. A total of 1702 proteins were identified, of which, 38 showed a significant change in abundance (p ≤ 0.05). Assessment of intra- and inter-stallion variability revealed that caseins (namely κ-, α-S1-, and α-S2-casein), were significantly more abundant during “high-fertility” periods, while several epididymal, and seminal plasma proteins (chiefly, epididymal sperm binding protein 1 [ELSPbP1], horse seminal plasma protein 1 [HSP-1] and clusterin), were significantly more abundant during “low-fertility” periods. We hypothesised that an increased abundance of caseins offers greater protection from potentially harmful seminal plasma proteins, thereby preserving cell functionality and fertility. In vitro exposure of spermatozoa to casein resulted in decreased levels of lipid scrambling (Merocyanine 540), higher abundance of sperm-bound caseins (α-S1-, α-S2-, and κ-casein), and lower abundance of sperm-bound HSP-1 (p ≤ 0.05). This study demonstrates key pathways governing short-term fertility fluctuations in the stallion, thereby providing a platform to develop robust, fertility assessment strategies into the future.
Collapse
Affiliation(s)
- Róisín Ann Griffin
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Rachel Ann Ogle
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Nathan Smith
- Analytical and Biomedical Research Facility, Research Division, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - David Anthony Skerrett-Byrne
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New South Wales, Australia
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
4
|
Bubenickova F, Postlerova P, Simonik O, Sirohi J, Sichtar J. Effect of Seminal Plasma Protein Fractions on Stallion Sperm Cryopreservation. Int J Mol Sci 2020; 21:E6415. [PMID: 32899253 PMCID: PMC7504567 DOI: 10.3390/ijms21176415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Seminal plasma (SP) is the natural environment for spermatozoa and contains a number of components, especially proteins important for successful sperm maturation and fertilization. Nevertheless, in standard frozen stallion insemination doses production, SP is completely removed and is replaced by a semen extender. In the present study, we analyzed the effects of the selected seminal plasma protein groups that might play an important role in reducing the detrimental effects on spermatozoa during the cryopreservation process. SP proteins were separated according to their ability to bind to heparin into heparin-binding (Hep+) and heparin-non-binding (Hep-) fractions. The addition of three concentrations-125, 250, and 500 µg/mL-of each protein fraction was tested. After thawing, the following parameters were assessed: sperm motility (by CASA), plasma membrane integrity (PI staining), and acrosomal membrane integrity (PNA staining) using flow cytometry, and capacitation status (anti-phosphotyrosine antibody) using imaging-based flow cytometry. Our results showed that SP protein fractions had a significant effect on the kinematic parameters of spermatozoa and on a proportion of their subpopulations. The 125 µg/mL of Hep+ protein fraction resulted in increased linearity (LIN) and straightness (STR), moreover, with the highest values of sperm velocities (VAP, VSL), also this group contained the highest proportion of the fast sperm subpopulation. In contrast, the highest percentage of slow subpopulation was in the groups with 500 µg/mL of Hep+ fraction and 250 µg/mL of Hep- fraction. Interestingly, acrosomal membrane integrity was also highest in the groups with Hep+ fraction in concentrations of 125 µg/mL. Our results showed that the addition of protein fractions did not significantly affect the plasma membrane integrity and capacitation status of stallion spermatozoa. Moreover, our results confirmed that the effect of SP proteins on the sperm functionality is concentration-dependent, as has been reported for other species. Our study significantly contributes to the lack of studies dealing with possible use of specific stallion SP fractions in the complex puzzle of the improvement of cryopreservation protocols. It is clear that improvement in this field still needs more outputs from future studies, which should be focused on the effect of individual SP proteins on other sperm functional parameters with further implication on the success of artificial insemination in in vivo conditions.
Collapse
Affiliation(s)
- Filipa Bubenickova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Jitka Sirohi
- Department of Statistics, Faculty of Economics and Management, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Jiri Sichtar
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (F.B.); (P.P.); (J.S.)
| |
Collapse
|
5
|
F. Riesco M, Anel-Lopez L, Neila-Montero M, Palacin-Martinez C, Montes-Garrido R, Alvarez M, de Paz P, Anel L. ProAKAP4 as Novel Molecular Marker of Sperm Quality in Ram: An Integrative Study in Fresh, Cooled and Cryopreserved Sperm. Biomolecules 2020; 10:E1046. [PMID: 32674525 PMCID: PMC7408074 DOI: 10.3390/biom10071046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
To improve artificial insemination protocols in ovine species it is crucial to optimize sperm quality evaluation after preservation technologies. Emerging technologies based on novel biomolecules and related to redox balance and proteins involved in sperm motility such as ProAKAP4 could be successfully applied in ram sperm evaluation. In this work, a multiparametric analysis of fresh, cooled, and cryopreserved ram sperm was performed at different complexity levels. Samples were evaluated in terms of motility (total motility, progressive motility, and curvilinear velocity), viability, apoptosis, content of reactive oxygen species, oxidation‒reduction potential, and ProAKAP4 expression and concentration. As expected, cryopreserved samples showed a significant decrease of sperm quality (p < 0.05), evidencing different freezability classes among samples that were detected by ProAKAP4 analyses. However, in cooled sperm no differences were found concerning motility, viability, apoptosis, ROS content, and redox balance compared to fresh sperm that could explain the reported decrease in fertility rates. However, although the proportion of sperm ProAKAP4 positive-cells remained unaltered in cooled sperm compared to fresh control, the concentration of this protein significantly decreased (p < 0.05) in cooled samples. This altered protein level could contribute to the decrease in fertility rates of cooled samples detected by some authors. More importantly, ProAKAP4 can be established as a promising diagnostic parameter of sperm quality allowing us to optimize sperm conservation protocols and finally improve artificial insemination in ovine species.
Collapse
Affiliation(s)
- Marta F. Riesco
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Cellular Biology, Department of Molecular Biology, University of León, 24071 León, Spain
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, 24071 León, Spain; (M.F.R.); (M.N.-M.); (C.P.-M.); (R.M.-G.); (M.A.); (P.d.P.); (L.A.)
- Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071 León, Spain
| |
Collapse
|
6
|
Khumran AM, Yimer N, Rosnina Y, Wahid H, Ariff MO, Homayoun H, Asmatullah K, Bello TK. Butylated hydroxytoluene protects bull sperm surface protein-P25b in different extenders following cryopreservation. Vet World 2020; 13:649-654. [PMID: 32546907 PMCID: PMC7245718 DOI: 10.14202/vetworld.2020.649-654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/24/2020] [Indexed: 11/16/2022] Open
Abstract
Aim The aim of this study was to investigate the effects of different concentration of butylated hydroxytoluene (BHT) on sperm membrane surface protein "P25b" from cryopreserved bull semen in either lecithin based Bioxcell® (BX) or two egg-yolk based extenders, tris-egg yolk (TEY), and citrate-egg yolk (CEY). Materials and Methods Forty-five semen samples, 15 each were extended with either BX, TEY, or CEY extender which contained different concentrations (0.0 - control, 0.5, 1.0, 1.5, 2.0, and 3.0 mM/mL) of BHT. The extended semen samples were frozen at a concentration of 20×106/mL in 0.25 mL straws and stored in liquid nitrogen for 2weeks. The frozen samples were thereafter thawed, proteins extracted and analyzed for quantities of protein P25b through direct sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel densitometry. Peptides were confirmed by Western blotting (WB). Results Results showed that supplementation of BHT improved (p<0.05) quantity of protein P25b at concentrations of 0.5mM/mL for BX and at 1.0 mM/mL for TEY and CE when compared with the controls and other treatments. Conclusion BHT supplementation at 0.5 in BX and 1.0 mM/mL in TEY and CEY has protected bull sperm fertility marker protein P25b in frozen-thawed bull sperm.
Collapse
Affiliation(s)
- A M Khumran
- Department of Theriogenology and Production, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - N Yimer
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Y Rosnina
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - H Wahid
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M O Ariff
- Department of Veterinary Pre-clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - H Homayoun
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - K Asmatullah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - T K Bello
- Biotechnology Research Programme, National Animal Production Research Institute, Zaria, Nigeria
| |
Collapse
|
7
|
Westfalewicz B, Dietrich M, Słowińska M, Judycka S, Ciereszko A. Seasonal changes in the proteome of cryopreserved bull semen supernatant. Theriogenology 2019; 126:295-302. [DOI: 10.1016/j.theriogenology.2018.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023]
|
8
|
Druart X, de Graaf S. Seminal plasma proteomes and sperm fertility. Anim Reprod Sci 2018; 194:33-40. [PMID: 29657075 DOI: 10.1016/j.anireprosci.2018.04.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023]
Abstract
During ejaculation, the spermatozoa are transported by the seminal plasma, a fluid resulting from secretions originating mainly from the prostate and the seminal vesicles in mammals. The interaction of the seminal plasma with spermatozoa induces binding of seminal proteins onto the sperm surface and membrane remodeling potentially impacting the sperm transport, survival and fertilizing ability in the female genital tract. The seminal plasma also contains peptides and proteins involved in the inflammatory and immune response of the female tract. Therefore the seminal plasma proteome has been investigated in a large range of taxa, including mammals, birds, fishes and insect species. The association of the seminal plasma with semen preservation or fertility identified proteic markers of seminal plasma function in domestic species. This review summarizes the current knowledge in seminal plasma proteomes and proteic markers of sperm preservation in animal species.
Collapse
Affiliation(s)
- Xavier Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - Simon de Graaf
- RMC Gunn Building (B19), Faculty of Veterinary Science, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
9
|
Casares-Crespo L, Fernández-Serrano P, Vicente JS, Marco-Jiménez F, Viudes-de-Castro MP. Rabbit seminal plasma proteome: The importance of the genetic origin. Anim Reprod Sci 2017; 189:30-42. [PMID: 29274750 DOI: 10.1016/j.anireprosci.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/14/2022]
Abstract
The present study was conducted to characterise rabbit seminal plasma proteins (SP proteins) focusing on the influence of the genetic origin and seasonality. In addition, β-NGF protein quantity in SP was determined. Semen samples were recovered from January to December 2014 using 6 males belonging to genotype A and six from genotype R. For each genotype, one pooled sample at the beginning, middle and end of each season was selected to develop the experiment. A total of 24 pools (3 for each season and genetic line) were analysed. SP proteins of the two experimental groups were recovered and subjected to in-solution digestion nano LC-MS/MS and bioinformatics analysis. The resulting library included 402 identified proteins validated with ≥95% Confidence (unused Score ≥ 1.3). These data are available via ProteomeXchange with identifier PXD006308. Only 6 proteins were specifically implicated in reproductive processes according to Gene Ontology annotation. Twenty-three proteins were differentially expressed between genotypes, 11 over-expressed in genotype A and 12 in genotype R. Regarding the effect of season on rabbit SP proteome, results showed that there is no clear pattern of protein variation throughout the year. Similar β-NGF relative quantity was observed between seasons and genotypes. In conclusion, this study generates the largest library of SP proteins reported to date in rabbits and provides evidence that genotype is related to a specific abundance of SP proteins.
Collapse
Affiliation(s)
- Lucía Casares-Crespo
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - Paula Fernández-Serrano
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain
| | - José S Vicente
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - María Pilar Viudes-de-Castro
- Animal Technology and Research Center (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Polígono La Esperanza n° 100, 12400 Segorbe, Castellón, Spain.
| |
Collapse
|
10
|
Anel-López L, Ortega-Ferrusola C, Martínez-Rodríguez C, Álvarez M, Borragán S, Chamorro C, Peña FJ, Anel L, de Paz P. Analysis of seminal plasma from brown bear (Ursus arctos) during the breeding season: Its relationship with testosterone levels. PLoS One 2017; 12:e0181776. [PMID: 28771486 PMCID: PMC5542667 DOI: 10.1371/journal.pone.0181776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP) plays an important role in the motility, viability and maintenance of the fertilizing capacity of mammalian spermatozoa. This study is the first on brown bear (Ursus arctos) SP components, and has two main objectives: 1) to define the SP composition in bear ejaculate and 2) to identify variations in SP composition in relation to high and low levels of testosterone in serum during the breeding season. Forty-eight sperm samples from 30 sexually mature male brown bears (Ursus arctos) were obtained by electroejaculation, and their serum testosterone levels were assessed to sort the animals into 2 groups (high and low testosterone levels, threshold 5 ng/dl). The biochemical and protein compositions of the SP samples were assessed, and sperm motility was analyzed. We found that lactate dehydrogenase was significantly higher in the low-serum-testosterone samples, while concentrations of lipase and Mg+ values were significantly higher in the high-serum-testosterone samples. In contrast, sperm motility did not significantly differ (P>0.05) between the testosterone level groups (total motility: 74.42.8% in the high-level group vs. 77.1±4.7% in the low-level group). A reference digital model was constructed since there is no information for this wild species. To do this, all gel images were added in a binary multidimensional image and thirty-three spots were identified as the most-repeated spots. An analysis of these proteins was done by qualitative equivalency (isoelectric point and molecular weight) with published data for a bull. SP protein composition was compared between bears with high and low serum testosterone, and three proteins (binder of sperm and two enzymes not identified in the reference bull) showed significant (P<0.05) quantitative differences. We conclude that male bears with high or low serum testosterone levels differs only in some properties of their SP, differences in enzyme LDIP2, energy source LACT2, one protein (similar to BSP1) and Mg ion were identified between these two groups. These data may inform the application of SP to improve bear semen extenders.
Collapse
Affiliation(s)
- L. Anel-López
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- * E-mail:
| | - C. Ortega-Ferrusola
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | - C. Martínez-Rodríguez
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Molecular Biology (Cell Biology), University of León, León, Spain
| | - M. Álvarez
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | | | - C. Chamorro
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Veterinary Anatomy, University of León, León, Spain
| | - F. J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - L. Anel
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | - P. de Paz
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Molecular Biology (Cell Biology), University of León, León, Spain
| |
Collapse
|
11
|
Fitri WN, Wahid H, Rosnina Y, Jesse FFA, Aimi-Sarah ZA, Mohd-Azmi ML, Azlan CA, Azrolharith MR, Peter ID, Ali Baiee FH. Semen characteristics, extension, and cryopreservation of Rusa deer ( Rusa timorensis). Vet World 2017; 10:779-785. [PMID: 28831222 PMCID: PMC5553147 DOI: 10.14202/vetworld.2017.779-785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of this research is to report parameters for breeding soundness evaluation, semen extension, and cryopreservation in Rusa timorensis. MATERIALS AND METHODS Seven healthy stags were chosen for semen collection using an electroejaculator. The collections were performed twice in a breeding season between February and June 2016. Samples were collected between 2 and 3 weeks interval, collected twice for each animal. Semen was evaluated, extended, and cryopreserved using four different extenders; Andromed®, BioXcell®, Triladyl®, and a modified Tris-egg yolk combined with Eurycoma longifolia Jack. RESULTS R. timorensis semen characteristics according to volume (ml), color, sperm concentration (106/ml), general motility (%), progressive motility (%), and % morphology of normal spermatozoa are 0.86±0.18 ml, thin milky to milky, 1194.2±346.1 106/ml, 82.9±2.8%, 76.1±4.8%, and 83.9±4.8%, respectively. CONCLUSION Semen characteristics of R. timorensis collected by electroejaculation is good allowing for cryopreservation and future artificial insemination work. The most suitable extender for Rusa deer semen is Andromed®.
Collapse
Affiliation(s)
- Wan-Nor Fitri
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Haron Wahid
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Research Centre for Wildlife, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yusoff Rosnina
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Research Centre for Ruminant Diseases, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zainal Abidin Aimi-Sarah
- Food Science and Technology Program School of Industrial Technology, Faculty of Applied Science, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Lila Mohd-Azmi
- Department of Veterinary Pathology and Microbiology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Che' Amat Azlan
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Muhammad Rashid Azrolharith
- Department of Medicine & Surgery of Farm & Exotic Animal, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Innocent Damudu Peter
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Falah Hasan Ali Baiee
- Department of Veterinary Clinical Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Pini T, Leahy T, Soleilhavoup C, Tsikis G, Labas V, Combes-Soia L, Harichaux G, Rickard JP, Druart X, de Graaf SP. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J Proteome Res 2016; 15:3700-3711. [PMID: 27636150 DOI: 10.1021/acs.jproteome.6b00530] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm proteomes have emerged for several species; however, the extent of species similarity is unknown. Sheep are an important agricultural species for which a comprehensive sperm proteome has not been produced. In addition, potential proteomic factors from seminal plasma that may contribute to improved fertility after cervical insemination are yet to be explored. Here we use liquid chromatography-tandem mass spectrometry to investigate the proteome of ejaculated ram spermatozoa, with quantitative comparison to epididymal spermatozoa. We also present a comparison to published proteomes of five other species. We identified 685 proteins in ejaculated ram spermatozoa, with the most abundant proteins involved in metabolic pathways. Only 5% of ram sperm proteins were not detected in other species, which suggest highly conserved structures and pathways. Of the proteins present in both epididymal and ejaculated ram spermatozoa, 7% were more abundant in ejaculated spermatozoa. Only two membrane-bound proteins were detected solely in ejaculated sperm lysates: liver enriched gene 1 (LEG1/C6orf58) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3). This is the first evidence that despite its relatively complex proteomic composition, seminal plasma exposure leads to few novel proteins binding tightly to the ram sperm plasma membrane.
Collapse
Affiliation(s)
- Taylor Pini
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Tamara Leahy
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | | | - Guillaume Tsikis
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Valerie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | | | | | - Jessica P Rickard
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Xavier Druart
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Simon P de Graaf
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|