1
|
Fiore E, Lisuzzo A, Laghi L, Harvatine KJ, Mazzotta E, Alterisio MC, Ciaramella P, Zhu C, Contiero B, Faillace V, Guccione J. Serum metabolomics assessment of etiological processes predisposing ketosis in water buffalo during early lactation. J Dairy Sci 2023; 106:3465-3476. [PMID: 36935234 DOI: 10.3168/jds.2022-22209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/23/2022] [Indexed: 03/19/2023]
Abstract
Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of β-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to serum BHB concentration: healthy group (37 MB; BHB <0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB ≥0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and unpaired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thyroid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this disease in the MB.
Collapse
Affiliation(s)
- E Fiore
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - A Lisuzzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - L Laghi
- Department of Agro-Food Science and Technology, University of Bologna, Piazza Goidanich 60, 47521, Cesena, Italy
| | - K J Harvatine
- Department of Animal Science, Pennsylvania State University, State College 16801
| | - E Mazzotta
- Istituto Zooprofilattico delle Venezie, Viale dell'Università 10, Legnaro 35020, Italy
| | - M C Alterisio
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy.
| | - P Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| | - C Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041 Sichuan, China
| | - B Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - V Faillace
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro 35020, Padua, Italy
| | - J Guccione
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II," Via Delpino 1, 80137 Napoli, Italy
| |
Collapse
|
2
|
Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia. Sci Rep 2022; 12:16463. [PMID: 36183000 PMCID: PMC9526738 DOI: 10.1038/s41598-022-20371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Ketosis is one of the most important health problems in dairy sheep. The aim of this study was to evaluate the metabolic alterations in hyperketonemic (HYK) ewes. Forty-six adult Sardinian ewes were enrolled between 7 ± 3 days post-partum. Blood samples were collected from the jugular vein using Venosafe tubes containing clot activator from jugular vein after clinical examination. The concentration of β-hydroxybutyrate (BHB) was determined in serum and used to divide ewes into assign ewes into: Non-HYK (serum BHB < 0.80 mmol/L) and HYK (serum BHB ≥ 0.80 mmol/L) groups. Animal data and biochemical parameters of groups were examined with one-way ANOVA, and metabolite differences were tested using a t-test. A robust principal component analysis model and a heatmap were used to highlight common trends among metabolites. Over-representation analysis was performed to investigate metabolic pathways potentially altered in connection with BHB alterations. The metabolomic analysis identified 54 metabolites with 14 different between groups. These metabolites indicate altered ruminal microbial populations and fermentations; an interruption of the tricarboxylic acid cycle; initial lack of glucogenic substrates; mobilization of body reserves; the potential alteration of electron transport chain; influence on urea synthesis; alteration of nervous system, inflammatory response, and immune cell function.
Collapse
|
3
|
Exploration of urinary metabolite dynamicity for early detection of pregnancy in water buffaloes. Sci Rep 2022; 12:16295. [PMID: 36175438 PMCID: PMC9523026 DOI: 10.1038/s41598-022-20298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Early and precise pregnancy diagnosis can reduce the calving interval by minimizing postpartum period. The present study explored the differential urinary metabolites between pregnant and non-pregnant Murrah buffaloes (Bubalus bubalis) during early gestation to identify potential pregnancy detection biomarkers. Urine samples were collected on day 0, 10, 18, 35 and 42 of gestation from the pregnant (n = 6) and on day 0, 10 and 18 post-insemination from the non-pregnant (n = 6) animals. 1H-NMR-based untargeted metabolomics followed by multivariate analysis initially identified twenty-four differentially expressed metabolites, among them 3-Hydroxykynurenine, Anthranilate, Tyrosine and 5-Hydroxytryptophan depicted consistent trends and matched the selection criteria of potential biomarkers. Predictive ability of these individual biomarkers through ROC curve analyses yielded AUC values of 0.6–0.8. Subsequently, a logistic regression model was constructed using the most suitable metabolite combination to improve diagnostic accuracy. The combination of Anthranilate, 3-Hydroxykynurenine, and Tyrosine yielded the best AUC value of 0.804. Aromatic amino acid biosynthesis, Tryptophan metabolism, Phenylalanine and Tyrosine metabolism were identified as potential pathway modulations during early gestation. The identified biomarkers were either precursors or products of these metabolic pathways, thus justifying their relevance. The study facilitates precise non-invassive urinary metabolite-based pen-side early pregnancy diagnostics in buffaloes, eminently before 21 days post-insemination.
Collapse
|
4
|
Xu Y, Cai W, Chen R, Zhang X, Bai Z, Zhang Y, Qin Y, Gu M, Sun Y, Wu Y, Wang Z. Metabolomic Analysis and MRM Verification of Coarse and Fine Skin Tissues of Liaoning Cashmere Goat. Molecules 2022; 27:molecules27175483. [PMID: 36080249 PMCID: PMC9457707 DOI: 10.3390/molecules27175483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
One of the critical elements in evaluating the quality of cashmere is its fineness, but we still know little about how it is regulated at the metabolic level. In this paper, we use UHPLC–MS/MS detection and analysis technology to compare the difference in metabolites between coarse cashmere (CT_LCG) and fine cashmere (FT_LCG) skin of Liaoning cashmere goats. According to the data, under positive mode four metabolites were significantly up-regulated and seven were significantly down-regulated. In negative mode, seven metabolites were significantly up-regulated and fourteen metabolites were significantly down-regulated. The two groups’ most significant metabolites, Gly–Phe and taurochenodeoxycholate, may be crucial in controlling cashmere’s growth, development, and fineness. In addition, we enriched six KEGG pathways, of which cholesterol metabolism, primary bile acid biosynthesis, and bile secretion were enriched in positive and negative modes. These findings offer a new research idea for further study into the critical elements influencing cashmere’s fineness.
Collapse
|
5
|
Predictive blood biomarkers of sheep pregnancy and litter size. Sci Rep 2022; 12:10307. [PMID: 35725997 PMCID: PMC9209467 DOI: 10.1038/s41598-022-14141-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Early detection of sheep pregnancy and the prediction of how many lambs a pregnant ewe delivers affects sheep farmers in a number of ways, most notably with regard to feed management, lambing rate, and sheep/lamb health. The standard practice for direct detection of sheep pregnancy and litter size (PLS) is ultrasonography. However, this approach has a number of limitations. Indirect measurement of PLS using blood biomarkers could offer a simpler, faster and earlier route to PLS detection. Therefore, we undertook a large-scale metabolomics study to identify and validate predictive serum biomarkers of sheep PLS. We conducted a longitudinal experiment that analyzed 131 serum samples over five timepoints (from seven days pre-conception to 70 days post-conception) from six commercial flocks in Alberta and Ontario, Canada. Using LC–MS/MS and NMR, we identified and quantified 107 metabolites in each sample. We also identified three panels of serum metabolite biomarkers that can predict ewe PLS as early as 50 days after breeding. These biomarkers were then validated in separate flocks consisting of 243 animals yielding areas-under-the-receiver-operating-characteristic-curve (AU-ROC) of 0.81–0.93. The identified biomarkers could lead to the development of a simple, low-cost blood test to measure PLS at an early stage of pregnancy, which could help optimize reproductive management on sheep farms.
Collapse
|
6
|
Zhang Y, Zhang T, Wu L, Li TC, Wang CC, Chung JPW. Metabolomic markers of biological fluid in women with reproductive failure: a systematic review of current literatures. Biol Reprod 2022; 106:1049-1058. [PMID: 35226730 DOI: 10.1093/biolre/ioac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding metabolic changes in reproductive failure, including early miscarriage (EM), recurrent miscarriage (RM) and repeated implantation failure (RIF), may be beneficial to understand the pathophysiology, thus improving pregnancy outcomes. Nine metabolomic profiling studies in women with reproductive failures (4 for EM, 3 for RM and 2 for RIF) were included for systematic review. In total 78, 75 and 25 significant metabolites were identified and 40, 40 and 34 metabolic pathways were enriched in EM, RM and RIF, respectively. Among them, 7 and 11 metabolites, and 28 and 28 pathways were shared between EM and RM and between RM and RIF, respectively. Notably, histidine metabolism has the highest impact in EM; phenylalanine, tyrosine and tryptophan biosynthesis. Ubiquinone and other terpenoid-quinone biosynthesis metabolism have the highest impact factor in RM; alanine, aspartate and glutamate metabolism have the highest impact factor in RIF. This study not only summarized the common and distinct metabolites and metabolic pathways in different reproductive failures but also summarized limitations of the study designs and methodologies. Hence, further investigations and validations of these metabolites are still urgently needed to understand the underlying metabolic mechanism for the development and treatment of reproductive failures.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Wu
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong -Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Differences in the serum metabolome profile of dairy cows according to the BHB concentration revealed by proton nuclear magnetic resonance spectroscopy ( 1H-NMR). Sci Rep 2022; 12:2525. [PMID: 35169190 PMCID: PMC8847571 DOI: 10.1038/s41598-022-06507-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The mobilization of body reserves during the transition from pregnancy to lactation might predispose dairy cows to develop metabolic disorders such as subclinical ketosis or hyperketonemia. These conditions are not easily identifiable and are frequently related to other diseases that cause economic loss. The aim of this study was to evaluate the serum metabolome differences according to the β-hydroxybutyrate (BHB) concentration. Forty-nine Holstein Friesian dairy cows were enrolled between 15 and 30 days in milk. According to their serum BHB concentration, the animals were divided into three groups: Group 0 (G0; 12 healthy animals; BHB ≤ 0.50 mmol/L); Group 1 (G1; 19 healthy animals; 0.51 ≤ BHB < 1.0 mmol/L); and Group 2 (G2; 18 hyperketonemic animals; BHB ≥ 1.0 mmol/L). Animal data and biochemical parameters were examined with one-way ANOVA, and metabolite significant differences were examined by t-tests. Fifty-seven metabolites were identified in the serum samples. Thirteen metabolites showed significant effects and seemed to be related to the mobilization of body reserves, lipids, amino acid and carbohydrate metabolism, and ruminal fermentation.
Collapse
|
8
|
Ying S, Dai Z, Xi Y, Li M, Yan J, Yu J, Chen Z, Shi Z. Metabolomic evaluation of serum metabolites of geese reared at different stocking densities. Br Poult Sci 2021; 62:304-309. [PMID: 33336589 DOI: 10.1080/00071668.2020.1849556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. Stocking density is an issue for poultry production. High stocking density can impact biochemical parameters, production, and reproductive performance; however, information regarding the effects of stocking density on serum metabolites in geese is limited.2. Twenty-day-old, Sanhua male geese (n = 240) were allocated to one of two experimental groups for 50 days. One group was housed under a low stocking density (LSD; two birds per m2) and one under a high stocking density (HSD; five birds per m2). Body weight and feed intake were recorded every 10 d. Eight serum samples per group were used for metabonomic analysis by liquid chromatography-mass spectrometry.3. Stocking density did not affect the spleen, liver, thymus, or bursa of Fabricius weights after 50 d. Feed intake and body weight was significantly lower in geese from the HSD group versus the LSD group (P < 0.05). Thirty-six differential serum metabolites were identified (P < 0.05), indicating altered amino acid, carbohydrate, lipid and vitamin cofactor metabolism.4. The results demonstrated that high-density stocking impacts geese, and provides insights into the mechanisms underlying the adverse health effects associated with HSD.
Collapse
Affiliation(s)
- S Ying
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Dai
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Y Xi
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - M Li
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - J Yan
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - J Yu
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Chen
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| | - Z Shi
- Institute of Animal Science, Laboratory of Animal Improvement and Reproduction, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China.,Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture, Nanjing, PR China
| |
Collapse
|
9
|
Ma L, Li Y, Ma X, EER H. Genome-wide SNPs and indels characteristics of three chinese domestic sheep breeds from different ecoregions. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Czopowicz M, Moroz A, Szaluś-Jordanow O, Mickiewicz M, Witkowski L, Nalbert T, Markowska-Daniel I, Puchała R, Bagnicka E, Kaba J. Profile of serum lipid metabolites of one-week-old goat kids depending on the type of rearing. BMC Vet Res 2020; 16:346. [PMID: 32957980 PMCID: PMC7507259 DOI: 10.1186/s12917-020-02575-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
Background Weaning of goat kids immediately after birth and feeding them on bovine or heat-treated caprine colostrum, referred to as snatching, is considered an effective control measure in some infectious diseases. The study was carried out in one-week-old goat kids to gain insight into the profile of lipid metabolites and to investigate the influence of snatching on kids’ metabolism. Fifty-two goat kids born to 23 female goats were included in the study – 22 kids were weaned immediately after birth and kept isolated from their mothers; 30 remaining kids were left with their mothers for next 3 weeks so that they could nurse on dams’ milk at will. Blood was collected at the age of 1 week and serum was obtained by centrifugation. The concentration of lipid metabolites was determined with mass spectrometry using a commercial MxP® Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria). Results Concentration of 240 lipid metabolites belonging to 10 lipid classes was above the limit of detection of the assay. These lipid metabolites were quantified and included in the analysis. Concentration of 2 lipid classes (acyl-alkyl-phosphatidylcholines and ceramides) and 31 lipid metabolites (14 triacylglycerols, 5 acyl-alkyl-phosphatidylcholines, 2 diacylphosphatidylcholines, 1 lyso-phosphatidylcholine, 5 ceramides, 2 sphingomyelins, and 2 cholesterol esters) differed significantly between the two groups of kids. Conclusion Snatching of kids results in reduction of serum concentration of lipid metabolites, however, the magnitude of this phenomenon does not seem to be sufficient to negatively affect kids’ health condition. This study is the first in which the broad set of lipid metabolites of young ruminants was quantified using the novel metabolomic assay MxP® Quant 500 kit.
Collapse
Affiliation(s)
- Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Olga Szaluś-Jordanow
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Lucjan Witkowski
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Tomasz Nalbert
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Iwona Markowska-Daniel
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ryszard Puchała
- Applied Physiology Unit, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-001, Warsaw, Poland
| | - Emilia Bagnicka
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552, Magdalenka, Poland
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
11
|
First Insights into the Urinary Metabolome of Captive Giraffes by Proton Nuclear Magnetic Resonance Spectroscopy. Metabolites 2020; 10:metabo10040157. [PMID: 32316507 PMCID: PMC7240958 DOI: 10.3390/metabo10040157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
The urine from 35 giraffes was studied by untargeted 1H-NMR, with the purpose of obtaining, for the first time, a fingerprint of its metabolome. The metabolome, as downstream of the transcriptome and proteome, has been considered as the most representative approach to monitor the relationships between animal physiological features and environment. Thirty-nine molecules were unambiguously quantified, able to give information about diet, proteins digestion, energy generation, and gut-microbial co-metabolism. The samples collected allowed study of the effects of age and sex on the giraffe urinary metabolome. In addition, preliminary information about how sampling procedure and pregnancy could affect a giraffe’s urinary metabolome was obtained. Such work could trigger the setting up of methods to non-invasively study the health status of giraffes, which is utterly needed, considering that anesthetic-related complications make their immobilization a very risky practice.
Collapse
|
12
|
Enhanced Immune Responses with Serum Proteomic Analysis of Hu Sheep to Foot-and-Mouth Disease Vaccine Emulsified in a Vegetable Oil Adjuvant. Vaccines (Basel) 2020; 8:vaccines8020180. [PMID: 32326379 PMCID: PMC7349086 DOI: 10.3390/vaccines8020180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study demonstrated that a vegetable oil consisting of soybean oil, vitamin E, and ginseng saponins (SO-VE-GS) had an adjuvant effect on a foot-and-mouth disease (FMD) vaccine in a mouse model. The present study was to compare the adjuvant effects of SO-VE-GS and the conventional ISA 206 on an FMD vaccine in Hu sheep. Animals were intramuscularly (i.m.) immunized twice at a 3-week interval with 1 mL of an FMD vaccine adjuvanted with SO-VE-GS (n = 10) or ISA 206 (n = 9). Animals without immunization served as control (n = 10). Blood was sampled prior to vaccination and at 2, 4, 6, and 8 weeks post the booster immunization to detect FMD virus (FMDV)-specific IgG. Blood collected at 8 weeks after the booster was used for the analyses of IgG1 and IgG2, serum neutralizing (SN) antibody, IL-4 and IFN-γ production, and proteomic profiles. The results showed that IgG titers rose above the protection level (1:128) in SO-VE-GS and ISA 206 groups after 2 and 4 weeks post the booster immunization. At 6 weeks post the booster, the ISA 206 group had 1 animal with IgG titer less than 1:128 while all the animals in the SO-VE-GS group retained IgG titers of more than 1:128. At 8 weeks post the booster, 6 of 9 animals had IgG titers less than 1:128 with a protective rate of 33.3% in the ISA 206 group, while only 1 of 10 animals had IgG titer less than 1:128 with a protective rate of 90% in the SO-VE-GS group, with statistical significance. In addition, IgG1, IgG2, SN antibodies, IL-4, and IFN-γ in the SO-VE-GS group were significantly higher than those of the ISA 206 group. Different adjuvant effects of SO-VE-GS and ISA 206 may be explained by the different proteomic profiles in the two groups. There were 39 and 47 differentially expressed proteins (DEPs) identified in SO-VE-GS compared to the control or ISA 206 groups, respectively. In SO-VE-GS vs. control, 3 immune related gene ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were detected, while 2 immune related GO terms and 5 KEGG pathways were found in ISA 206 vs. control. GO and KEGG analyses indicated that 'positive regulation of cytokine secretion', 'Th1/Th2 cell differentiation', and 'Toll-like receptor signaling pathways', were obviously enriched in the SO-VE-GS group compared to the other groups. Coupled with protein-protein interaction (PPI) analysis, we found that B7TJ15 (MAPK14) was a key DEP for SO-VE-GS to activate the immune responses in Hu sheep. Therefore, SO-VE-GS might be a promising adjuvant for an FMD vaccine in Hu sheep.
Collapse
|
13
|
Wang S, Yi X, Wu M, Zhao H, Liu S, Pan Y, Li Q, Tang X, Zhu Y, Sun X. Detection of key gene InDels in TGF-β pathway and its relationship with growth traits in four sheep breeds. Anim Biotechnol 2019; 32:194-204. [PMID: 31625451 DOI: 10.1080/10495398.2019.1675682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TGF-β signaling pathway plays an important role in regulating cell proliferation and differentiation, embryonic development, bone formation, etc. LTBP1, THBS1, SMAD4 and other genes are important members of TGF-β signaling pathway. LTBP1 binds to TGF-β, while THBS1 binds to LTBP1, which is an important signal transduction molecule in the TGF-β pathway. In order to explore the effects of the insertion/deletion variation of three genes (LTBP1, THBS1, SMAD4) in the TGF-β signaling pathway on the growth traits such as body length and body weight of sheep, a total of 625 healthy individuals from 4 breeds of the Tong sheep, Hu sheep, small-tail Han sheep and Lanzhou fat-tail sheep were identified and analyzed. In this study, we identified 4 InDel loci: one loci of LTBP1, two loci of THBS1, and one loci of SMAD4, respectively named as: InDel-1 (deletion 13 bp), InDel-2 (deletion 16 bp), InDel-3 (deletion 22 bp), InDel-4 (deletion 7 bp). Among the 4 analyzed breeds, association analysis showed that all new InDel polymorphisms were significantly associated with 10 different growth traits (p < 0.05), which may provide a theoretical basis for sheep breeding to accelerate the progression of marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yanjiao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
|
15
|
Li J, Erdenee S, Zhang S, Wei Z, Zhang M, Jin Y, Wu H, Chen H, Sun X, Xu H, Cai Y, Lan X. Genetic effects of PRNP gene insertion/deletion (indel) on phenotypic traits in sheep. Prion 2018; 12:42-53. [PMID: 29394137 DOI: 10.1080/19336896.2017.1405886] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prion protein (PRNP) gene is well known for affecting mammal transmissible spongiform encephalopathies (TSE), and is also reported to regulate phenotypic traits (e.g. growth traits) in healthy ruminants. To identify the insertion/deletion (indel) variations of the PRNP gene and evaluate their effects on growth traits, 768 healthy individuals from five sheep breeds located in China and Mongolia were identified and analyzed. Herein, four novel indel polymorphisms, namely, Intron-1-insertion-7bp (I1-7bp), Intron-2-insertion-15bp (I2-15bp), Intron-2-insertion-19bp (I2-19bp), and 3' UTR-insertion-7bp (3' UTR-7bp), were found in the sheep PRNP gene. In five analyzed breeds, the minor allelic frequencies (MAF) of the above indels were in the range of 0.008 to 0.986 (I1-7bp), 0.113 to 0.336 (I2-15bp), 0.281 to 0.510 (I2-19bp), and 0.040 to 0.238 (3' UTR-7bp). Additionally, there were 15 haplotypes and the haplotype 'II2-15bp-D3'UTR-7bp-DI2-19bp-DI1-7bp' had the highest frequency, which varied from 0.464 to 0.629 in five breeds. Moreover, association analysis revealed that all novel indel polymorphisms were significantly associated with 13 different growth traits (P < 0.05). Particularly, the influences of I2-15bp on chest width (P = 0.001) in Small Tail Han sheep (ewe), 3' UTR-7bp on chest circumference (P = 0.003) in Hu sheep, and I2-19bp on tail length (P = 0.001) in Tong sheep, were highly significant (P < 0.01). These findings may be a further step toward the detection of indel-based typing within and across sheep breeds, and of promising target loci for accelerating the progress of marker-assisted selection in sheep breeding.
Collapse
Affiliation(s)
- Jie Li
- a College of Animal Science and Technology, Innovation Experimental College, Northwest A&F University , Xi'an, Shaanxi , China
| | - Sarantsetseg Erdenee
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Shaoli Zhang
- a College of Animal Science and Technology, Innovation Experimental College, Northwest A&F University , Xi'an, Shaanxi , China
| | - Zhenyu Wei
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Meng Zhang
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Yunyun Jin
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Hui Wu
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Hong Chen
- c Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University , Yangling , Shaanxi , China
| | - Xiuzhu Sun
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| | - Hongwei Xu
- d Science Experimental Center, College of Life Science and Engineering, Northwest University for Nationalities , Chengguan District, Lanzhou City in northwest, Lanzhou , Gansu , China
| | - Yong Cai
- d Science Experimental Center, College of Life Science and Engineering, Northwest University for Nationalities , Chengguan District, Lanzhou City in northwest, Lanzhou , Gansu , China
| | - Xianyong Lan
- b College of Animal Science and Technology, Northwest A&F University , Xi'an , Shaanxi , China
| |
Collapse
|