1
|
Liu CL, Mou HL, Na RS, Wang X, Hu PF, Ceccobelli S, Huang YF, E GX. Multiomic meta-analysis suggests a correlation between steroid hormone-related genes and litter size in goats. Anim Genet 2024; 55:779-787. [PMID: 39019844 DOI: 10.1111/age.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Litter size is a key indicator of production performance in livestock. However, its genetic basis in goats remains poorly understood. In this work, a genome-wide selection sweep analysis (GWSA) on 100 published goat genomes with different litter rates was performed for the first time to identify candidate genes related to kidding rate. This analysis was combined with the public RNA-sequencing data of ovary tissues (follicular phase) from high- and low-yielding goats. A total of 2278 genes were identified by GWSA. Most of these genes were enriched in signaling pathways related to ovarian follicle development and hormone secretion. Moreover, 208 differentially expressed genes between groups were obtained from the ovaries of goats with different litter sizes. These genes were substantially enriched in the cholesterol and steroid synthesis signaling pathways. Meanwhile, the weighted gene co-expression network was used to perform modular analysis of differentially expressed genes. The results showed that seven modules were reconstructed, of which one module showed a very strong correlation with litter size (r = -0.51 and p-value <0.001). There were 51 genes in this module, and 39 hub genes were screened by Pearson's correlation coefficient between core genes > 0.4, correlation coefficient between module members > 0.80 and intra-module connectivity ≥5. Finally, based on the results of GWSA and hub gene Venn analysis, seven key genes (ACSS2, HECW2, KDR, LHCGR, NAMPT, PTGFR and TFPI) were found to be associated with steroid synthesis and follicle growth development. This work contributes to understanding of the genetic basis of goat litter size and provides theoretical support for goat molecular breeding.
Collapse
Affiliation(s)
- Cheng-Li Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hui-Long Mou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ri-Su Na
- Animal Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao Wang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Peng-Fei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Yong-Fu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guang-Xin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Tang Y, Lu S, Wei J, Xu R, Zhang H, Wei Q, Han B, Gao Y, Zhao X, Peng S, Pan M, Ma B. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells. Theriogenology 2024; 219:65-74. [PMID: 38402699 DOI: 10.1016/j.theriogenology.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Both oocyte secretory factors (OSFs) and estrogen are essential for the development and function of mammalian ovarian follicles, playing synergistic role in regulating oocyte growth. OSFs can significantly affect the biological processes regulated by estrogen in cumulus cells (CCs). It is a scientific question worth investigating whether oocyte secretory factors can influence the expression of estrogen receptors in CCs. In our study, we observed a significant increase in the mRNA and protein expressions of estrogen receptor β (Esr2/ERβ) and G-protein-coupled estrogen receptor (GPER) in cumulus cells of goat cumulus-oocyte complexes (COCs) cultured in vitro for 6 h. Furthermore, the addition of 10 ng/mL growth-differentiation factor 9 (GDF9) and 5 ng/mL bone morphogenetic protein 15 (BMP15) to the culture medium of goat COCs resulted in a significant increase in the expressions of ERβ and GPER in cumulus cells. To explore the mechanism further, we performed micromanipulation to remove oocyte contents and co-cultured the oocytectomized complexes (OOXs) with denuded oocytes (DOs) or GDF9/BMP15. The expressions of ERβ and GPER in the co-culture groups were significantly higher than those in the OOXs group, but there was no difference compared to the COCs group. Mechanistically, we found that SB431542 (inhibitor of GDF9 bioactivity), but not LDN193189 (inhibitor of BMP15 bioactivity), abolished the upregulation of ERβ and GPER in cumulus cells and the activation of Smad2/3 signaling. In conclusion, our results demonstrate that the oocyte secretory factor GDF9 promotes the activation of Smad2/3 signaling in cumulus cells during goat COCs culture in vitro, and the phosphorylation of Smad2/3 induces the expression of estrogen receptors ERβ and GPER in cumulus cells.
Collapse
Affiliation(s)
- Yaju Tang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sihai Lu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Juncai Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Rui Xu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Bin Han
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Yan Gao
- Yulin Animal Husbandry and Veterinary Service Center, Yulin, 719000, Shaanxi, PR China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Sha Peng
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Zhao L, Yang H, Li M, Xiao M, Li X, Cheng L, Cheng W, Chen M, Zhao Y. Global gene expression profiling of perirenal brown adipose tissue whitening in goat kids reveals novel genes linked to adipose remodeling. J Anim Sci Biotechnol 2024; 15:47. [PMID: 38481287 PMCID: PMC10938744 DOI: 10.1186/s40104-024-00994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is known to be capable of non-shivering thermogenesis under cold stimulation, which is related to the mortality of animals. In the previous study, we observed that goat BAT is mainly located around the kidney at birth, and changes to white adipose tissue (WAT) in the perirenal adipose tissue of goats within one month after birth. However, the regulatory factors underlying this change is remain unclear. In this study, we systematically studied the perirenal adipose tissue of goat kids in histological, cytological, and accompanying molecular level changes from 0 to 28 d after birth. RESULTS Our study found a higher mortality rate in winter-born goat kids, with goat birthing data statistics. Then we used thermal imaging revealing high temperature in goat hips at postnatal 0 d and gradually decrease during 28 d. This is consistent with the region of perirenal BAT deposition and highlights its critical role in energy expenditure and body temperature regulation in goat kids. Additionally, we found a series of changes of BAT during the first 28 d after birth, such as whitening, larger lipid droplets, decreased mitochondrial numbers, and down-regulation of key thermogenesis-related genes (UCP1, DIO2, UCP2, CIDEA, PPARGC1a, C/EBPb, and C/EBPa). Then, we used RNA-seq found specific marker genes for goat adipose tissue and identified 12 new marker genes for BAT and 10 new marker genes for WAT of goats. Furthermore, 12 candidate genes were found to potentially regulate goat BAT thermogenesis. The mechanism of the change of this biological phenomenon does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes. While apoptosis may play a limited role, it is largely not critical in this transition process. CONCLUSIONS We concluded that perirenal BAT plays a crucial role in thermoregulation in newborn goat kids, with notable species differences in the expression of adipose tissue marker genes, and we highlighted some potential marker genes for goat BAT and WAT. Additionally, the change from BAT to WAT does not involve a large-scale death of brown adipocytes and subsequent proliferation of white adipocytes.
Collapse
Affiliation(s)
- Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Haili Yang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Minhao Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Min Xiao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Xingchun Li
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Wenqiang Cheng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Herbivore Science, Chongqing, 400715, China.
| |
Collapse
|
4
|
Wang L, Wang Y, Li B, Zhang Y, Song S, Ding W, Xu D, Zhao Z. BMP6 regulates AMH expression via SMAD1/5/8 in goat ovarian granulosa cells. Theriogenology 2023; 197:167-176. [PMID: 36525856 DOI: 10.1016/j.theriogenology.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Anti-Müllerian hormone (AMH) is produced by ovarian granulosa cells (GCs)and plays a major role in inhibiting the recruitment of primordial follicles and reducing the sensitivity of growing follicles to follicle-stimulating hormone (FSH). Bone morphogenetic protein 6 (BMP6) has similar spatiotemporal expression to AMH during follicular development, suggesting that BMP6 may regulate AMH expression. However, the specific mechanism by which BMP6 regulates AMH expression remains unclear. The objectives of this study were to examine the molecular pathway by which BMP6 regulates AMH expression. The results showed that BMP6 promoted the secretion and expression of AMH in goat ovarian GCs. Mechanistically, BMP6 upregulated the expression of sex-determining region Y-box 9 (SOX9) and GATA-binding factor 4 (GATA4), which was associated with the transcriptional initiation of AMH. AMH expression was significantly decreased by GATA4 knockdown. Moreover, BMP6 treatment promoted the phosphorylation of SMAD1/5/8, whereas inhibiting the SMAD1/5/8 signaling pathway significantly abolished BMP6-induced upregulation of AMH and GATA4 expression. Interestingly, the activation of SMAD1/5/8 alone did not affect the expression of AMH or GATA4. The results suggested that BMP6 upregulated GATA4 through the SMAD1/5/8 signaling pathway, which in turn promoted AMH expression.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yukun Wang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Bijun Li
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Yiyu Zhang
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Shuaifei Song
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Wenfei Ding
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China
| | - Dejun Xu
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University,Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
5
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
6
|
Bhattacharya K, Saha I, Sen D, Bose C, Chaudhuri GR, Dutta S, Sengupta P, Bhattacharya S, Barman SS, Syamal AK. Role of anti-Mullerian hormone in polycystic ovary syndrome. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPolycystic ovary syndrome (PCOS) is the most common gynecological endocrine disorders affecting up to 10% of all females in their reproductive age, and its cause of onset is still elusive. A spectrum of recent research reflected diverse associations between increased plasma level of anti-Mullerian hormone (AMH) and different clinical features of PCOS. Since AMH levels reflect the pool of growing follicles that potentially can ovulate, it can be stated that serum AMH levels can be used to assess the “functional ovarian reserve,” rather mentioning it as the “ovarian reserve.” AMH also appears to be a premier endocrine parameter for the assessment of atrophied ovarian follicular pool in response to age of individuals. AMH hinders the follicular development as well as the follicular recruitment and ultimately resulting in follicular arrest which is the key pathophysiologic condition for the onset of PCOS. Furthermore, FSH-induced aromatase activity remains inhibited by AMH that aids emergence of other associated clinical signs of PCOS, such as excess androgen, followed by insulin resistance among the PCOS individuals. Given the versatile association of AMH with PCOS and scarcity in literature explaining the underling mechanisms how AMH relates with PCOS, this review article will discuss the roles of AMH in the pathogenesis of PCOS which may introduce a new era in treatment approach of PCOS.
Collapse
|
7
|
Maruyama H, Sakai S, Ieda M. Endothelin-1 Alters BMP Signaling to Promote Proliferation of Pulmonary Artery Smooth Muscle Cells. Can J Physiol Pharmacol 2022; 100:1018-1027. [PMID: 36037530 DOI: 10.1139/cjpp-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by abnormal outgrowth of pulmonary artery smooth muscle cells (PASMCs) of the media. Abundant expression of endothelin-1 (ET-1) and activated p38 mitogen-activated protein kinase (p38MAPK) has been observed in PAH patients. p38MAPK has been implicated in cell proliferation. An unspecified disturbance in bone morphogenetic protein (BMP) signaling may be involved in the development of PAH. Type I receptors (BMPR1A and BMPR1B) and type II receptors (BMPR2) transduce signals via two distinct pathways, i.e., canonical and non-canonical pathways, activating Smad1/5/8 and p38MAPK, respectively. BMPR1B expression was previously reported to be enhanced in the PASMCs of patients with idiopathic PAH. BMP15 binds specifically to BMPR1B. We assessed the effects of ET-1 on BMP receptor expression and cell proliferation. BMP2 increased BMPR1B expression in human PASMCs after pretreatment with ET-1 in vitro. Although BMP2 alone did not affect PASMC proliferation, BMP2 treatment after ET-1 pretreatment significantly accelerated PASMC proliferation. PH-797804, a selective p38MAPK inhibitor, abrogated this proliferation. Similarly, after ET-1 pretreatment, BMP15 significantly accelerated the proliferation of PASMCs, whereas stimulation with BMP15 alone did not. In conclusion, in PASMCs, ET-1 exposure under pathological conditions alters BMP signaling to activate p38MAPK, resulting in cell proliferation.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- National Hospital Organisation Kasumigaura Medical Center Internal Medicine, Cardiology, Tsuchiura, Japan;
| | - Satoshi Sakai
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| | - Masaki Ieda
- University of Tsukuba Faculty of Medicine, Tsukuba, Ibaraki, Japan;
| |
Collapse
|
8
|
BMP6 Promotes the Secretion of 17 Beta-Estradiol and Progesterone in Goat Ovarian Granulosa Cells. Animals (Basel) 2022; 12:ani12162132. [PMID: 36009721 PMCID: PMC9404746 DOI: 10.3390/ani12162132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3β-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1.
Collapse
|
9
|
di Clemente N, Racine C, Pierre A, Taieb J. Anti-Müllerian Hormone in Female Reproduction. Endocr Rev 2021; 42:753-782. [PMID: 33851994 DOI: 10.1210/endrev/bnab012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance, was shown to be synthesized by the ovary in the 1980s. This article reviews the main findings of the past 20 years on the regulation of the expression of AMH and its specific receptor AMHR2 by granulosa cells, the mechanism of action of AMH, the different roles it plays in the reproductive organs, its clinical utility, and its involvement in the principal pathological conditions affecting women. The findings in respect of regulation tell us that AMH and AMHR2 expression is mainly regulated by bone morphogenetic proteins, gonadotropins, and estrogens. It has now been established that AMH regulates the different steps of folliculogenesis and that it has neuroendocrine effects. On the other hand, the importance of serum AMH as a reliable marker of ovarian reserve and as a useful tool in the prediction of the polycystic ovary syndrome (PCOS) and primary ovarian failure has also been acknowledged. Last but not least, a large body of evidence points to the involvement of AMH in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institut Hospitalo-Universitaire ICAN, Paris, France.,Sorbonne Paris Cité, Paris-Diderot Université, Paris, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| | - Joëlle Taieb
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Physiologie de l'Axe Gonadotrope U1133, Paris, France
| |
Collapse
|
10
|
Wang S, Tang W, Ma L, Yang J, Huang K, Du X, Luo A, Shen W, Ding T, Ye S, Zhou S, Yang S, Wang S. MiR-145 regulates steroidogenesis in mouse primary granulosa cells through targeting Crkl. Life Sci 2021; 282:119820. [PMID: 34273377 DOI: 10.1016/j.lfs.2021.119820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
AIMS It has been demonstrated that miR-145 is expressed in primordial follicles and modulates the initiation of primordial follicle development. We aimed to explore the function of miR-145 in mouse granulosa cells (mGCs). MATERIALS AND METHODS The proliferation and differentiation of GCs were examined via MTT, EDU assay, QRT-PCR, ELISA and electron microscope analysis. The target of miR-145 was determined by bioinformatics analysis and luciferase reporter assay and the molecular mechanisms were examined via western blot and quantitative Real-Time RT-PCR. KEY FINDINGS We proved that down-regulation of miR-145 could inhibit GCs proliferation and differentiation. In addition, we provided evidence that Crkl was the target gene of miR-145. The miR-145 antagomir caused an increase in Crkl expression and activation of the JNK/p38 MAPK pathway. Overexpression of Crkl with pEGFP-N1-Crkl vector inhibited GCs differentiation and progesterone synthesis as well as activation of the JNK/p38 MAPK pathway. SIGNIFICANCE Our study shows that miR-145 targets Crkl and through the JNK/p38 MAPK signaling pathway promotes the GCs proliferation, differentiation, and steroidogenesis. MiR-145 may play an important role in the ovarian physiology and pathology.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lanfang Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou, People's Republic of China
| | - Jun Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuangmei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
12
|
Estienne A, Jarrier P, Staub C, Venturi E, Le Vern Y, Clemente N, Monniaux D, Monget P. Anti-Müllerian hormone production in the ovary: a comparative study in bovine and porcine granulosa cells†. Biol Reprod 2020; 103:572-582. [PMID: 32432313 DOI: 10.1093/biolre/ioaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, we aimed to determine the origin of the difference, in terms of anti-Müllerian hormone production, existing between the bovine and porcine ovaries. We first confirmed by quantitative real-time-Polymerase-Chain Reaction, ELISA assay and immunohistochemistry that anti-Müllerian hormone mRNA and protein production are very low in porcine ovarian growing follicles compared to bovine ones. We then have transfected porcine and bovine granulosa cells with vectors containing the luciferase gene driven by the porcine or the bovine anti-Müllerian hormone promoter. These transfection experiments showed that the porcine anti-Müllerian hormone promoter is less active and less responsive to bone morphogenetic protein stimulations than the bovine promoter in both porcine and bovine cells. Moreover, bovine but not porcine granulosa cells were responsive to bone morphogenetic protein stimulation after transfection of a plasmidic construction including a strong response element to the bone morphogenetic proteins (12 repetitions of the GCCG sequence) upstream of the luciferase reporter gene. We also showed that SMAD6, an inhibitor of the SMAD1-5-8 pathway, is strongly expressed in porcine compared to the bovine granulosa cells. Overall, these results suggest that the low expression of anti-Müllerian hormone in porcine growing follicles is due to both a lack of activity/sensitivity of the porcine anti-Müllerian hormone promoter, and to the lack of responsiveness of porcine granulosa cells to bone morphogenetic protein signaling, potentially due to an overexpression of SMAD6 compared to bovine granulosa cells. We propose that the low levels of anti-Müllerian hormone in the pig would explain the poly-ovulatory phenotype in this species.
Collapse
Affiliation(s)
- Anthony Estienne
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Françis du Cheval et de l'Equitation (IFCE), Université de Tours, Tours, France
| | - Peggy Jarrier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Françis du Cheval et de l'Equitation (IFCE), Université de Tours, Tours, France
| | - Christophe Staub
- Physiologie Animale et Systèmes d'Elevage, Unité Expérimentale de Physiologie Animale de l'Orfrasière (UEPAO), Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Unité Expérimentale (UE) 1297, Nouzilly, France
| | - Eric Venturi
- Physiologie Animale et Systèmes d'Elevage, Unité Expérimentale de Physiologie Animale de l'Orfrasière (UEPAO), Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Unité Expérimentale (UE) 1297, Nouzilly, France
| | - Yves Le Vern
- Infectiologie, Santé Publique (ISP), Unité Mixte de Recherche (UMR) 1297, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Université de Tours, Tours, France
| | - Nathalie Clemente
- Sorbonne Université, Insitut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine, Paris, France
| | - Danielle Monniaux
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Françis du Cheval et de l'Equitation (IFCE), Université de Tours, Tours, France
| | - Philippe Monget
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Françis du Cheval et de l'Equitation (IFCE), Université de Tours, Tours, France
| |
Collapse
|
13
|
AMH: Could It Be Used as A Biomarker for Fertility and Superovulation in Domestic Animals? Genes (Basel) 2019; 10:genes10121009. [PMID: 31817280 PMCID: PMC6947652 DOI: 10.3390/genes10121009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a reliable and easily detectable reproductive marker for the fertility competence of many farm animal species. AMH is also a good predictor of superovulation in cattle, sheep, and mares. In this review, we have summarized the recent findings related to AMH and its predictive reliability related to fertility and superovulation in domestic animals, especially in cattle. We focused on: (1) the dynamics of AMH level from infancy to prepubescence as well as during puberty and adulthood; (2) AMH as a predictor of fertility; (3) the association between antral follicle count (AFC) and plasma AMH level; (4) AMH as a predictor of superovulation; and (5) factors affecting AMH levels in domestic animals, especially cattle. Many factors affect the circulatory levels of AMH when considering the plasma, like nutrition, activity of granulosa cells, disease state and endocrine disruptions during fetal life. Briefly, we concluded that AMH concentrations are static within individuals, and collection of a single dose of blood has become more popular in the field of assisted reproductive technologies (ART). It may act as a potential predictor of fertility, superovulation, and ovarian disorders in domestic animals. However, due to the limited research in domestic animals, this potential of AMH remains underutilized.
Collapse
|