1
|
Hirakawa T, Nakabayashi K, Ito N, Hata K, Imi S, Shibata M, Urushiyama D, Miyata K, Yotsumoto F, Yasunaga S, Baba T, Miyamoto S. Transwell Culture with Adipose Tissue-Derived Stem Cells and Fertilized Eggs Mimics the In Vivo Development of Fertilized Eggs to Blastocysts in the Fallopian Tube: An Animal Study. Antioxidants (Basel) 2024; 13:704. [PMID: 38929143 PMCID: PMC11200376 DOI: 10.3390/antiox13060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Many countries, including Japan, are experiencing declining birth rates. Assisted reproductive technologies have consistently demonstrated good results in resolving infertility. Although the development of fertilized eggs into blastocysts has been recognized as a crucial step in assisted reproductive technologies, the involved mechanisms are currently unclear. Here, we established a new culture system for the in vitro development of fertilized eggs into blastocysts. In the Transwell culture system, the rate of blastocysts hatching from fertilized eggs cultured with adipose-derived stem cells (ASCs) was significantly higher than that of blastocysts cultured only with fertilized eggs. Gene ontology analysis revealed that the developed blastocysts displayed essential gene expression patterns in mature blastocysts. Additionally, when cultured with 3rd-passage ASCs, the developed blastocysts expressed the core genes for blastocyst maturation and antioxidant properties compared to those cultured only with fertilized eggs or cultured with 20th-passage ASCs. These results suggest that the Transwell culture system may imitate the in vivo tubal culture state for fertilized eggs. Exosomes derived from stem cells with stemness potential play a powerful role in the development of blastocysts from fertilized eggs. Additionally, the exosomes expressed specific microRNAs; therefore, the Transwell culture system resulted in a higher rate of pregnancy. In future, the extraction of their own extracellular vesicles from the culture medium might contribute to the development of novel assisted reproductive technologies.
Collapse
Affiliation(s)
- Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Noriko Ito
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Shiori Imi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Mami Shibata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Shin’ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
| | - Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
- Cybele Corporation Limited, 2-128-14 Sugukita, Kasugashi 816-0864, Japan
| |
Collapse
|
2
|
Biswas D, Yoon JD, Mishra B, Hyun SH. Epigen enhances the developmental potential of in vitro fertilized embryos by improving cytoplasmic maturation. Theriogenology 2024; 218:16-25. [PMID: 38290231 DOI: 10.1016/j.theriogenology.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Numerous growth factors contribute to oocyte maturation and embryonic development in vivo; however, only a few are understood. One such factor is epigen, a new member of the epidermal growth factor (EGF) family that is secreted by the granulosa cells of immature oocytes. We hypothesized that epigen may play a role in oocyte maturation, specifically in the nuclear and cytoplasmic aspects. This study aimed to investigate the effects of epigen on porcine oocyte maturation and embryo development in vitro. In this study, three different concentrations of epigen (3, 6, and 30 ng/mL) were added to tissue culture medium-199 (TCM-199) during in vitro maturation of porcine oocytes. A control group that did not receive epigen supplementation was also included. Mature porcine oocytes were fertilized, and the resulting zygotes were cultured until day 7. The levels of intracellular glutathione (GSH) and reactive oxygen species (ROS) were measured in the in vitro matured oocytes. At the same time, the expression patterns of genes related to apoptosis were detected in day 7 blastocysts (BLs) using real-time quantitative PCR Apoptosis was detected by annexin-V assays in mature oocytes. Data were analyzed using ANOVA and Duncan's test on SPSS, and results are presented as mean ± SEM. The group that received 6 ng/mL epigen had a significantly lower rate of germinal vesicle breakdown (GVBD) than the control group without affecting the nuclear maturation among the experimental groups. Among the treatment groups, the 6 ng/mL epigen group showed significantly higher levels of intracellular GSH and lower ROS production. Supplementation with 6 ng/mL epigen significantly improved blastocyst (BL) formation rates compared to those in the control and 3 ng/mL groups. Additionally, the blastocyst expansion rate was significantly higher with epigen supplementation (6 ng/mL). In the fertilization experiment, the group supplemented with 6 ng/mL epigen exhibited significantly higher levels of monospermy and fertilization efficiency and lower levels of polyspermy than the control group. This study indicated that adding epigen at a concentration of 6 ng/mL can significantly enhance the developmental potential of porcine oocytes fertilized in vitro. Specifically, the study found that epigen improves cytoplasmic maturation, which helps prevent polyspermy and emulates monospermic penetration.
Collapse
Affiliation(s)
- Dibyendu Biswas
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Department of Medicine, Surgery and Obstetrics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal Campus, Barisal, 8210, Bangladesh
| | - Junchul David Yoon
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Birendra Mishra
- Dept. of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, AgSci 216, 1955 East-West Rd, Honolulu, HI, 96822, USA
| | - Sang Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
3
|
Schalich KM, Koganti PP, Castillo JM, Reiff OM, Cheong SH, Selvaraj V. The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment. Physiol Genomics 2024; 56:74-97. [PMID: 37694291 DOI: 10.1152/physiolgenomics.00035.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the "uterine secretory cycle" and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Juan M Castillo
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Olivia M Reiff
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, Veterinary College, Cornell University, Ithaca, New York, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States
| |
Collapse
|
4
|
Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality. ZYGOTE 2022; 30:801-808. [PMID: 36047469 DOI: 10.1017/s0967199422000284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In porcine in vitro production (IVP) systems, the use of oocytes derived from prepubertal gilts, whilst being commercially attractive, remains challenging due to their poor developmental competence following in vitro maturation (IVM). Follicular fluid contains important growth factors and plays a key role during oocyte maturation; therefore, it is a common supplementation for porcine IVM medium. However, follicular fluid contains many poorly characterized components, is batch variable, and its use raises biosecurity concerns. In an effort to design a defined IVM system, growth factors such as cytokines have been previously tested. These include leukaemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1), the combination of which is termed 'FLI'. Here, using abattoir-derived oocytes in a well established porcine IVP system, we compared follicular fluid and FLI supplementation during both IVM and embryo culture to test the hypothesis that FLI can substitute for follicular fluid without compromising oocyte nuclear and cytoplasmic maturation. We demonstrate that in oocytes derived from prepubertal gilts, FLI supplementation enhances oocyte meiotic maturation and has a positive effect on the quality and developmental competence of embryos. Moreover, for the first time, we studied the effects of follicular fluid and FLI combined showing no synergistic effects.
Collapse
|
5
|
Cheng YH, Tsai NC, Chen YJ, Weng PL, Chang YC, Cheng JH, Ko JY, Kang HY, Lan KC. Extracorporeal Shock Wave Therapy Combined with Platelet-Rich Plasma during Preventive and Therapeutic Stages of Intrauterine Adhesion in a Rat Model. Biomedicines 2022; 10:biomedicines10020476. [PMID: 35203684 PMCID: PMC8962268 DOI: 10.3390/biomedicines10020476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine adhesion (IUA) is caused by artificial endometrial damage during intrauterine cavity surgery. The typical phenotype involves loss of spontaneous endometrium recovery and angiogenesis. Undesirable symptoms include abnormal menstruation and infertility; therefore, prevention and early treatment of IUA remain crucial issues. Extracorporeal shockwave therapy (ESWT) major proposed therapeutic mechanisms include neovascularization, tissue regeneration, and fibrosis. We examined the effects of ESWT and/or platelet-rich plasma (PRP) during preventive and therapeutic stages of IUA by inducing intrauterine mechanical injury in rats. PRP alone, or combined with ESWT, were detected an increased number of endometrial glands, elevated vascular endothelial growth factor protein expression (hematoxylin-eosin staining and immunohistochemistry), and reduced fibrosis rate (Masson trichrome staining). mRNA expression levels of nuclear factor-kappa B, tumor necrosis factor-α, transforming growth factor-β, interleukin (IL)-6, collagen type I alpha 1, and fibronectin were reduced during two stages. However, PRP alone, or ESWT combined with PRP transplantation, not only increased the mRNA levels of vascular endothelial growth factor (VEGF) and progesterone receptor (PR) during the preventive stage but also increased PR, insulin-like growth factor 1 (IGF-1), and IL-4 during the therapeutic stage. These findings revealed that these two treatments inhibited endometrial fibrosis and inflammatory markers, thereby inhibiting the occurrence and development of intrauterine adhesions.
Collapse
Affiliation(s)
- Yin-Hua Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Ni-Chin Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Obstetrics and Gynecology, Pingtung Christian Hospital, Pingtung 900, Taiwan
| | - Yun-Ju Chen
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Yun-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (J.-Y.K.)
- Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Jih-Yang Ko
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.-H.C.); (J.-Y.K.)
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Yo Kang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (Y.-H.C.); (Y.-J.C.); (P.-L.W.); (Y.-C.C.); (H.-Y.K.)
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
- Correspondence: ; Tel.: +886-7-7317123-8654; Fax: +886-7-7322915
| |
Collapse
|
6
|
Biswas D, Hyun SH. Supplementation of fetal bovine serum increased the quality of in vitro fertilized porcine embryo. J Adv Vet Anim Res 2022; 8:589-596. [PMID: 35106298 PMCID: PMC8757674 DOI: 10.5455/javar.2021.h549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 11/03/2022] Open
Abstract
Objective The present study aimed to explain the effect of fetal bovine serum (FBS) on the in vitro production of porcine embryos and the molecular effects of FBS on the growing of porcine embryos. Materials and Methods Immature porcine oocytes were matured and fertilized in vitro. The resulting zygotes were cultured in porcine zygotic medium-3- until day 7 and FBS was added on day 4. Without FBS, it was treated as a control group. Quantitative real-time PCR and 2',7'-dichloro-dihydro-fluorescein diacetate (H2DCFDA) molecular staining techniques were used to detect the expression patterns of apoptosis-associated genes and the accumulation of reactive oxygen species (ROS), respectively. Paired student's t-test was used by GraphPad Prism statistical software. Results FBS supplementation boosted blastocyst (BL) development and total cell count per BL substantially (p < 0.05). However, hatching and hatched BLs also increased in the FBS-treated group compared to the control. We also found that ROS accumulation in FBS-treated embryos was significantly reduced (p < 0.05) compared to the control group. The expression of the anti-apoptotic gene BCL-2 was significantly increased in FBS-treated BLs, but the pro-apoptotic gene, caspase-3 expression, was significantly reduced in FBS-treated BLs. Conclusion Our results suggest that FBS supplementation in porcine culture media could increase porcine embryo production by decreasing ROS accumulation and increasing the anti-apoptotic gene expression in developing BLs.
Collapse
Affiliation(s)
- Dibyendu Biswas
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Republic of Korea.,Department of Medicine, Surgery and Obstetrics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barisal campus, Bangladesh
| | - Sang Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
7
|
Sang L, Xiao Y, Jiang Z, Forde N, Tian XC, Lonergan P, Hansen PJ. Atlas of receptor genes expressed by the bovine morula and corresponding ligand-related genes expressed by uterine endometrium. Mol Reprod Dev 2021; 88:694-704. [PMID: 34596291 PMCID: PMC8558826 DOI: 10.1002/mrd.23534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023]
Abstract
Regulation of the mammalian embryo involves cell‐signaling molecules produced by the maternal oviduct and endometrium. Here, datasets on the transcriptome of the gestational Days 5 and 6 bovine morula and Day 5 maternal endometrium were examined to identify receptor genes expressed by the morula and expression of the corresponding ligand‐related genes in the endometrium. A total of 175 receptor genes were identified in the morula, including 48 encoding for growth factors or WNT signaling molecules, 25 for cytokines and chemokines, 35 involved in juxtacrine and matricellular signaling and 25 encoding for receptors for small molecules. Some of the highly‐expressed pairs of endometrial ligand and embryo receptor genes included MDK and its receptors ITGB1, SDC4 and LRP2, WNT5A (RYK), VEGFA (ITGB1), GPI (AMFR), and the hedgehog proteins IHH and DHH (HHIP). The most highly expressed receptors for small molecules were GPRC5C (retinoic acid receptor), PGRMC1 (progesterone), and CHRNB2 (acetylcholine). There were also 84 genes encoding for cell signaling ligands expressed by the morula, with the most highly expressed being GPI, AIMP1, TIMP1, IK, and CCN2. The atlas of receptor and ligand genes should prove useful for understanding details of the communication between the embryo and mother that underlies optimal embryonic development.
Collapse
Affiliation(s)
- Lei Sang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.,Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Yao Xiao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Niamh Forde
- Department of Discovery and Translational Sciences, University of Leeds, Leeds, UK
| | - Xiuchun Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
9
|
Ramos-Ibeas P, Gimeno I, Cañón-Beltrán K, Gutiérrez-Adán A, Rizos D, Gómez E. Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Front Cell Dev Biol 2020; 8:619902. [PMID: 33392207 PMCID: PMC7775420 DOI: 10.3389/fcell.2020.619902] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, infertility affects up to 14% of couples under reproductive age, leading to an exponential rise in the use of assisted reproduction as a route for conceiving a baby. In the same way, thousands of embryos are produced in cattle and other farm animals annually, leading to increased numbers of individuals born. All reproductive manipulations entail deviations of natural phenotypes and genotypes, with in vitro embryo technologies perhaps showing the biggest effects, although these alterations are still emerging. Most of these indications have been provided by animal models, in particular the bovine species, due to its similarities to human early embryo development. Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. Thus, during in vitro culture, a number of stressful conditions affect embryonic quality and viability, inducing subfertility and/or long-term consequences that may reach the offspring. A high proportion of the embryos produced in vitro are arrested at a species-specific stage of development during the first cell divisions. These arrested embryos do not show signs of programmed cell death during early cleavage stages. Instead, defective in vitro produced embryos would enter a permanent cell cycle arrest compatible with cellular senescence, in which they show active metabolism and high reactive oxygen species levels. Later in development, mainly during the morula and blastocyst stages, apoptosis would mediate the elimination of certain cells, accomplishing both a physiological role in to balancing cell proliferation and death, and a pathological role preventing the transmission of damaged cells with an altered genome. The latter would acquire relevant importance in in vitro produced embryos that are submitted to stressful environmental stimuli. In this article, we review the mechanisms mediating apoptosis and senescence during early embryo development, with a focus on in vitro produced bovine embryos. Additionally, we shed light on the protective role of senescence and apoptosis to ensure that unhealthy cells and early embryos do not progress in development, avoiding long-term detrimental effects.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Gijón, Spain
| |
Collapse
|
10
|
In vitro Production of Porcine Embryos: Current Status and Possibilities – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This paper presents the current possibilities, state of knowledge and prospects of in vitro production (IVP) of pig embryos, which consists of in vitro oocyte maturation, in vitro fertilization and in vitro embryo culture. In pigs, oocyte maturation is one of the most important stages in the embryo IVP process. It determines the oocyte’s fertilization ability as well as its embryonic development. Through many research studies of the proper selection of oocytes and appropriate maturation medium composition (especially the addition of various supplements), the in vitro maturation of pig oocytes has been significantly improved. Recent studies have demonstrated that modifications of the diluents and in vitro fertilization media can reduce polyspermy. Furthermore, several adjustments of the porcine culture media with the addition of some supplements have enhanced the embryo quality and developmental competence. These updates show the progress of IVP in pigs that has been achieved; however, many problems remain unsolved.
Collapse
|
11
|
Llobat L. Embryo gene expression in pig pregnancy. Reprod Domest Anim 2020; 55:523-529. [PMID: 31986225 DOI: 10.1111/rda.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Pregnancy is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of the females and varies depending on the embryonic, pre-implantation or foetal stages. In the embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In contrast, the implantation consists of three phases: elongation of the conceptus, adhesion and union of the embryo to the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that facilitate adhesion and cytokines. All these changes are ultimately regulated by different lipid and hormonal substances, specifically by progesterone, oestradiol and prostaglandins, which regulate the expression of many proteins necessary for the development of the embryo, endometrial remodelling and embryo-maternal communication. This paper is a review of primary gene regulatory mechanisms in pigs during different stages of implantation.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|