1
|
Gong X, Yan X, Li M, Di M, Lu J, Xu S, Pan Z, Zhu Y, Wu Z, Zhang W, Qin P, Liu Y, Li Y, Fang F. Active immunization with recombinant GnRH6-CRM197 inhibits reproductive function of male rats. Syst Biol Reprod Med 2024; 70:131-138. [PMID: 38833557 DOI: 10.1080/19396368.2024.2350372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 μg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.
Collapse
Affiliation(s)
- XinBao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - MengXian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - MoYan Di
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - JunTai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - ShuangShuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - ZhiHao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - YanYun Zhu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - ZhuoYa Wu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - YunSheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - FuGui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
2
|
Wang C, Yang C, Zeng Y, Zhang M. GnRH-immunocastration: an alternative method for male animal surgical castration. Front Vet Sci 2023; 10:1248879. [PMID: 38026623 PMCID: PMC10644813 DOI: 10.3389/fvets.2023.1248879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Castration of male animals is intended to produce high-enhance quality of animal meat, prevent unpleasant taste, reduce aggressive behavior, and manage overbreeding. Over the years, Tranditional methods of mechanical and surgical castration have been employed over the years, but they fall short of meeting animal welfare requirements due to the associated risk of infection, pain, and stress. Immunocastration, specifically Gonadotropin-releasing hormone (GnRH)-immunocastration, targeting the hypothalamic-pituitary-testis (HPT) axis, has emerged as an animal-friendly alternative to surgical castration, effectively addressing these issues. This review seeks to systematically summarize the principles, development, current applications and challenges of GnRH-immunocastration, offering insights into its role in promoting animal welfare.
Collapse
Affiliation(s)
- Chun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
4
|
French H, Segabinazzi L, Middlebrooks B, Peterson E, Schulman M, Roth R, Crampton M, Conan A, Marchi S, Gilbert T, Knobel D, Bertschinger H. Efficacy and Safety of Native and Recombinant Zona Pellucida Immunocontraceptive Vaccines Formulated with Non-Freund's Adjuvants in Donkeys. Vaccines (Basel) 2022; 10:1999. [PMID: 36560409 PMCID: PMC9788400 DOI: 10.3390/vaccines10121999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to test zona pellucida (ZP) vaccines’ immunocontraceptive efficacy and safety when formulated with non-Freund’s adjuvant (6% Pet Gel A and 500 Μg Poly(I:C)). Twenty-four jennies were randomly assigned to three treatment groups: reZP (n = 7) received three doses of recombinant ZP vaccine; pZP (n = 9) received two doses of native porcine ZP; and Control group (n = 8) received two injections of placebo. Jennies were monitored weekly via transrectal ultrasonography and blood sampling for serum progesterone profiles and anti-pZP antibody titres. In addition, adverse effects were inspected after vaccination. Thirty-five days after the last treatment, jacks were introduced to each group and rotated every 28 days. Vaccination with both pZP and reZP was associated with ovarian shutdown in 44% (4/9) and 71% (4/7) of jennies, 118 ± 33 and 91 ± 20 days after vaccination, respectively (p > 0.05). Vaccination delayed the chances of a jenny becoming pregnant (p = 0.0005; Control, 78 ± 31 days; pZP, 218 ± 69 days; reZP, 244 ± 104 days). Anti-pZP antibody titres were elevated in all vaccinated jennies compared to Control jennies (p < 0.05). In addition, only mild local injection site reactions were observed in the jennies after treatment. In conclusion, ZP vaccines formulated with non-Freund’s adjuvant effectively controlled reproduction in jennies with only minor localised side effects.
Collapse
Affiliation(s)
- Hilari French
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Lorenzo Segabinazzi
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Brittany Middlebrooks
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Erik Peterson
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Martin Schulman
- Veterinary Population Management Laboratory, Section of Reproduction, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa
| | - Robyn Roth
- Council for Scientific and Industrial Research, Pretoria 0184, South Africa
| | - Michael Crampton
- Council for Scientific and Industrial Research, Pretoria 0184, South Africa
| | - Anne Conan
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Silvia Marchi
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Trevor Gilbert
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
| | - Darryn Knobel
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre 00334, Saint Kitts and Nevis
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Henk Bertschinger
- Veterinary Population Management Laboratory, Section of Reproduction, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
5
|
Aurich C, Kaps M. Suppression of reproductive behaviour and gonadal function in female horses-An update. Reprod Domest Anim 2022; 57 Suppl 4:4-12. [PMID: 35467049 PMCID: PMC9790428 DOI: 10.1111/rda.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The behaviour of mares is often detrimental to their performance resulting in frequent demand for methods to suppress gonadal function. In addition, prevention of unintended reproduction especially in feral horse populations may require methods for suppression of gonadal function. Surgical ovariectomy is a safe method but not an acceptable approach in feral mares and undesired in mares where future breeding is considered. There are different approaches for artificial prolongation of the luteal phase resulting in transient inhibition of oestrus and ovulation. Among those, treatment with natural or synthetic progestogens is considered the most common and successful method. Whereas application of intrauterine devices may result in prolongation of luteal function in non-pregnant mares, intrauterine insertion of glass balls is no longer recommended because of complications in individual mares. There are several safer alternatives that may be of interest, especially for population control in free-roaming horses. Treatment with long-acting deslorelin implants inhibited ovulation and oestrus behaviour in mares for limited and variable time intervals in a dose-dependent manner. The effect of GnRH vaccines varies considerably among individual mares, is age dependent, and oestrus-like behaviour may still occur. Contraception via immunization against native porcine or recombinant zona pellucida antigen is successful, but immunocontraception is as much a result of ovarian inactivity as an antibody-based block to sperm-oocyte binding. In conclusion, several treatments for suppression of gonadal function in mares are available, but there are advantages and disadvantages associated that have to be considered. The treatment of choice will thus differ with regard to the demands.
Collapse
Affiliation(s)
- Christine Aurich
- Artificial Insemination and Embryo TransferDepartment for Small Animals and HorsesVetmeduni ViennaViennaAustria
| | - Martim Kaps
- Artificial Insemination and Embryo TransferDepartment for Small Animals and HorsesVetmeduni ViennaViennaAustria
| |
Collapse
|
6
|
French H, Peterson E, Schulman M, Roth R, Crampton M, Conan A, Marchi S, Knobel D, Bertschinger H. Efficacy and safety of native and recombinant zona pellucida immunocontraceptive vaccines in donkeys. Theriogenology 2020; 153:27-33. [PMID: 32417608 DOI: 10.1016/j.theriogenology.2020.04.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
Abstract
Feral and semi-feral donkeys are recognised as a problem in some world regions. The main problem associated with uncontrolled donkey populations is habitat degradation and competition for feed resources, especially in arid climes. Controlling population numbers would reduce the impact of donkeys and other species. While removal by various means is effective, it has been shown to stimulate reproductive rate. Probably the most effective and humane solution is reducing reproduction using minimally invasive methods including immunocontraception. This study tested the immunocontraceptive efficacy and safety of zona pellucida (ZP) vaccines, both recombinant (reZP; three treatments) and native porcine (pZP; two treatments) vaccines formulated with Freund's modified complete (primary) and Freund's incomplete (boosters) adjuvants in donkey jennies. Control jennies received adjuvants only (two treatments). Twenty-five non-pregnant jennies were randomly assigned to reZP (n = 9), pZP (n = 8) or control (n = 8) groups. Weekly monitoring of the reproductive tract and ovaries via transrectal palpation and ultrasound and inspection of injection sites was conducted and anti-pZP antibody titers were measured. Five weeks after last treatment, one donkey jack was introduced to each group and rotated every 21 days. By 232 days after last treatment the number pregnant and median days to pregnancy was 2/9 and 214 (reZP group), 1/8 and 196 (pZP group) and 8/8 and 77 (control group). Median time to ovarian shut-down was 77 (9/9) and 56 (7/8) days for reZP and pZP groups, respectively. This was observed in association with a distinct reduction in mean uterine diameter. The antibody response was equally good for both ZP-treated groups. Incorporation of Freund's adjuvants initially produced a high incidence of side effects from local swelling and intermittent lameness followed weeks later by sterile abscesses (reZP, 9/9; pZP, 7/8; control, 3/8). Both ZP vaccines effectively controlled reproduction in jennies, albeit with a high incidence of adjuvant-associated side effects.
Collapse
Affiliation(s)
- Hilari French
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies.
| | - Erik Peterson
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies.
| | - Martin Schulman
- Veterinary Population Management Laboratory, Section of Reproduction, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, South Africa.
| | - Robyn Roth
- Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Michael Crampton
- Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Anne Conan
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies.
| | - Silvia Marchi
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies.
| | - Darryn Knobel
- Ross University School of Veterinary Medicine, PO Box 334, Basseterre, St Kitts, West Indies; Department of Veterinary Tropical Diseases, University of Pretoria, South Africa.
| | - Henk Bertschinger
- Veterinary Population Management Laboratory, Section of Reproduction, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, South Africa.
| |
Collapse
|
7
|
Joonè CJ, Nolan MB, Bertschinger HJ, Schulman ML. Researching immunocontraceptive vaccines with mares (Equus caballus) as both a target and model for African elephant (Loxodonta africana) cows: A review. Anim Reprod Sci 2019; 207:146-152. [PMID: 31208844 DOI: 10.1016/j.anireprosci.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
A sequence of studies is reviewed that reported the domestic horse (Equus caballus) mare as an appropriate and accessible research platform for recording clinical and laboratory data post-immunisation with anti- GnRH and -zona pellucida (ZP) immunocontraceptive vaccines. Experience with a native porcine ZP (pZP) vaccine in African elephant (Loxodonta africana) cows highlighted needs for improving vaccine formulations and more clearly defining associated ovarian effects and safety profiles. Initially, the efficacy, reversibility and safety of the GnRH vaccine Improvac® in mares was demonstrated using reproductive tract ultrasonography and concurrently measuring serum antibody titres and progesterone concentrations. Results informed the study design and minimally invasive monitoring of post-treatment ovarian steroid responses of this vaccine in free-ranging African elephant cows. A subsequent sequence of studies reported reversible contraceptive and immunological efficacy in pony mares immunised with pZP formulated with Freund's adjuvants. By comparison, mares treated with a recombinant ZP3 and ZP4 (reZP) vaccine showed disappointing responses. Unexpectedly, most pZP-treated mares showed ovarian inactivity. In attempting to understand this response, results showed the involvement of cytotoxic (CD8+) T-cells negatively correlated to serum ovarian steroid and anti-Müllerian hormone (AMH) levels. Of concern was the prevalence of injection-site lesions ascribable to Freund's adjuvants. Following this, mares treated with both pZP and a novel reZP vaccine formulated with non-Freund's adjuvants showed comparable immunological responses and ovarian inactivity, notably without adverse treatment reactions. In addition, measuring AMH showed promise for monitoring ovarian function in anti-ZP-treated animals.
Collapse
Affiliation(s)
- Carolynne J Joonè
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Australia.
| | - Margaret B Nolan
- Section of Reproduction, Faculty of Veterinary Science, University of Pretoria, South Africa.
| | - Henk J Bertschinger
- Section of Reproduction, Faculty of Veterinary Science, University of Pretoria, South Africa.
| | - Martin L Schulman
- Section of Reproduction, Faculty of Veterinary Science, University of Pretoria, South Africa.
| |
Collapse
|
8
|
Nolan MB, Schulman ML, Botha AE, Human AM, Roth R, Crampton MC, Bertschinger HJ. Serum antibody immunoreactivity and safety of native porcine and recombinant zona pellucida vaccines formulated with a non-Freund’s adjuvant in horses. Vaccine 2019; 37:1299-1306. [DOI: 10.1016/j.vaccine.2019.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/01/2023]
|
9
|
Fertility Control in Wildlife: Review of Current Status, Including Novel and Future Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:507-543. [PMID: 31471808 DOI: 10.1007/978-3-030-23633-5_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wildlife conservation requires varying degrees of management of endangered species as well as management of their potential predators and competitors. Conservation also depends on ameliorating human-wildlife conflict, especially where there is a threat to the safety of people and of their pets and livestock. In addition, sustainability of wildlife populations can be affected by feral domestic animals or invasive species, that require removal or control. With the increasing concern for animal welfare, non-lethal methods of limiting population size and distribution, such as fertility control, are gaining favor. Breeding programs in zoos depend on highly effective and selective contraception to manage sustainable insurance populations. This review covers fertility control methods currently in use, those that have not lived up to past promises, and others that are under development and present hope for addressing remaining challenges.
Collapse
|