1
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
2
|
Wang L, Wang C, Peng Y, Zhang Y, Liu Y, Liu Y, Yin Y. Research progress on anti-stress nutrition strategies in swine. ANIMAL NUTRITION 2023; 13:342-360. [DOI: 10.1016/j.aninu.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
|
3
|
Ma L, Chen C, Hai S, Wang C, Rahman SU, Huang W, Zhao C, Feng S, Wang X. Inhibition of Mitochondrial Fission Alleviates Zearalenone-Induced Mitochondria-Associated Endoplasmic Reticulum Membrane Dysfunction in Piglet Sertoli Cells. Toxins (Basel) 2023; 15:toxins15040253. [PMID: 37104191 PMCID: PMC10146415 DOI: 10.3390/toxins15040253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
This study aimed to investigate the effects of zearalenone (ZEA) on piglet Sertoli cell (SC)-mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) based on mitochondrial fission, and to explore the molecular mechanism of ZEA-induced cell damage. After the SCs were exposed to the ZEA, the cell viability decreased, the Ca2+ levels increased, and the MAM showed structural damage. Moreover, glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1) were upregulated at the mRNA and protein levels. However, phosphofurin acidic cluster protein 2 (PACS2), mitofusin2 (Mfn2), voltage-dependent anion channel 1 (VDAC1), and inositol 1,4,5-trisphosphate receptor (IP3R) were downregulated at the mRNA and protein levels. A pretreatment with mitochondrial division inhibitor 1 (Mdivi-1) decreased the ZEA-induced cytotoxicity toward the SCs. In the ZEA + Mdivi-1 group, the cell viability increased, the Ca2+ levels decreased, the MAM damage was repaired, and the expression levels of Grp75 and Miro1 decreased, while those of PACS2, Mfn2, VDAC1, and IP3R increased compared with those in the ZEA-only group. Thus, ZEA causes MAM dysfunction in piglet SCs through mitochondrial fission, and mitochondria can regulate the ER via MAM.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chuangjiang Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenlong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| |
Collapse
|
4
|
Li L, Cui Z, Wang H, Huang B, Ma H. Dietary supplementation of dimethyl itaconate protects against chronic heat stress-induced growth performance impairment and lipid metabolism disorder in broiler chickens. J Anim Sci 2023; 101:skad120. [PMID: 37085946 PMCID: PMC10610747 DOI: 10.1093/jas/skad120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
This study aimed to investigate the protective effects of dietary supplementation of dimethyl itaconate (DI) on chronic heat stress (HS)-induced impairment of the growth performance and lipid metabolism in broiler chickens. 21 days old male Ross 308 broiler chickens (a total of 120, about 700 g body weight) were randomly divided into five treatment groups, including control group, HS group, HS + 50 mg/kg DI group, HS + 150 mg/kg DI group, and HS + 200 mg/kg DI group, and each group contains eight cages of twenty-four broilers. The broiler chickens in the control group were raised in the room (21 ± 1 °C) and fed with a finisher diet for 21 days. The broiler chickens of the HS group and the HS + DI groups were raised in the room (32 ± 1 °C for 8 h/day) and fed with a finisher diet containing DI at 0, 50, 150, and 200 mg/kg diet for 21 days. The results showed that HS-induced decreases in the final body weight (P < 0.01), average daily gain (P < 0.01), and average daily feed intake (P < 0.01) were alleviated by dietary supplementation of DI (P < 0.05). In addition, dietary supplementation of DI attenuated the increases in the liver index (P < 0.01) and abdominal fat rate (P < 0.01) caused by HS in broilers (P < 0.05). Treatment with DI ameliorated HS-induced lipid accumulation in the liver and serum of broiler chickens (P < 0.05). The upregulation of mRNA levels of fat synthesis factors (P < 0.01) and downregulation of mRNA levels of lipolysis-related factors (P < 0.01) caused by HS were markedly blunted after treatment with DI in the liver of broilers (P < 0.05). Broilers exposed to HS exhibited lower phosphorylated protein levels of AMP-activated protein kinase α and acetyl-CoA carboxylase α compared to the control group (P < 0.01), which were improved by treatment with DI (P < 0.01). Collectively, these results demonstrated that dietary supplementation of DI protects against chronic HS-induced growth performance impairment and lipid metabolism disorder in broiler chickens. These results not only provide a theoretical basis for DI to alleviate metabolic disorders but also provide a reference value for DI as a feed additive to improve heat stress in poultry caused by high temperature.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
The role of ALOX15B in heat stress-induced apoptosis of porcine sertoli cells. Theriogenology 2022; 185:6-15. [DOI: 10.1016/j.theriogenology.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/03/2023]
|
6
|
He C, Sun J, Yang D, He W, Wang J, Qin D, Zhang H, Cai H, Liu Y, Li N, Hua J, Peng S. Nrf2 activation mediates the protection of mouse Sertoli Cells damage under acute heat stress conditions. Theriogenology 2022; 177:183-194. [PMID: 34715543 DOI: 10.1016/j.theriogenology.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Heat stress is known to negatively impact the reproductive process of livestock, which inevitably leads to a decline in animal fertility. Nuclear factor E2-related factor 2 (Nrf2) is an inducible transcription factor, which is essential for maintaining redox signal transmission against oxidative stress. However, there is no reliable research on the response mechanism of Sertoli Cells (SCs) against heat stress and the activation of Nrf2 when SCs are exposed to heat stress. Here, we used primary mouse SCs and SCs line TM4, along with Nrf2 specific inhibitor to determine the reaction mechanism of SCs to maintain intracellular redox homeostasis and self-survival by activating Nrf2. We found that acute heat stress only affected the vitality of SCs and the expression of functional molecules (tight junction-associated proteins and lactate dehydrogenase A [LDHA]) but did not cause cell apoptosis. When Nrf2 was inhibited, more cell death occurred in TM4 cells post heat stress treatment, along with a greater decrease in cell viability and a significant increase in intracellular ROS levels. Our study clarified for the first time the protective effect of Nrf2 activation on heat stress-induced SCs damage. It explained the possible reasons or mechanisms involved in the survival of SCs, the critical protective cells in the testis, which were not affected by heat stress. This study further improved the response mechanism of SCs in the reproductive injury caused by a high-temperature environment.
Collapse
Affiliation(s)
- Chen He
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jing Sun
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Wenlai He
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Dezhe Qin
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Huimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Hui Cai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Yundie Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China.
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Gan L, Huang S, Hu Y, Zhang J, Wang X. Heat treatment reduced the expression of miR-7-5p to facilitate insulin-stimulated lactate secretion by targeting IRS2 in boar Sertoli cells. Theriogenology 2021; 180:161-170. [PMID: 34973648 DOI: 10.1016/j.theriogenology.2021.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 12/26/2022]
Abstract
Insulin dysfunction of diabetes mellitus (DM) disorders the glucose metabolism in Sertoli cells (SCs), resulting in the impairment of spermatogenesis.Insulin signaling system in Sertoli cells (SCs) plays an important role in regulating lactate secretion. Heat treatment could increase the lactate secretion of boar SCs, but whether heat treatment participates in lactate secretion by improving the sensitivity of insulin is unknown. In the current study, the primary SCs from 21-day-old boar were employed to treat with 100 nM insulin for 24 h or heat treatment (43 °C, 30 min). Heat treatment strengthened the effect of insulin on the effect of lactate secretion. In addition, heat treatment increased the expression of insulin-induced insulin receptor substrate 2 (IRS2), but reduced the expression of miR-7-5p. Using dual luciferase reporter assay and Western blot, the study found that IRS2 is a potential target gene of miR-7-5p. Heat treatment also enhanced the Phosphorylation of insulin-stimulated PI3K/Akt, and increased lactate secretion by promoting the expression of Glucose Transporter 3 (GLUT3), Lactate Dehydrogenase-A (LDHA) and monocarboxylate transporter 1 (MCT1). Furthermore, miR-7-5p inhibitor could partly mimic the effects of heat treatment on lactate production of SCs, indicating that heat treatment improves insulin sensitivity by regulating the expression of miR-7-5p/IRS2/PI3K/Akt. These results reveal a novel miRNA-mediated mechanism of heat treatment on the regulation of lactate metabolism production, and suggest that targeting miR-7-5p is a probably therapeutic method to insulin dysfunction-induced metabolic diseases.
Collapse
Affiliation(s)
- Lu Gan
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Sha Huang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - JiaoJiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - XianZhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
8
|
Xu YH, Li Y, Hu SQ, Li CR, Liu DL, Hu K, Cui LD, Guo J. Effect of Wuzi Yanzong Pills on Sertoli cells and blood-testis barrier in heat-stressed rats based on Akt signalling pathway. Andrologia 2021; 53:e14169. [PMID: 34197007 DOI: 10.1111/and.14169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023] Open
Abstract
The blood-testis barrier (BTB) of Sertoli cells (SCs) is an important biological barrier that maintains spermatogenesis and provides a favourable microenvironment for spermatogenesis. However, heat stress can directly damage the BTB structural proteins of testicular SCs, leading to dyszoospermia. Wuzi Yanzong Pills (WYP) is a traditional Chinese medicine formula used to treat male reproductive diseases. However, whether WYP could ameliorate heat stress injury in primary SCs extracted from rat testes and BTB proteins remains unknown. Here, treatment with WYP (low, medium and high dose) increased the SC viability and the proliferation of cell antigen Ki67 significantly. Additionally, it promoted SC maturation, which presented in the form of increased androgen receptors (ARs) and decreased cytokeratin 18 (CK-18) in three WYP dose groups. WYP upregulated BTB proteins such as zonula occludens 1 (ZO-1) and occludin across all WYP groups and decreased phosphorylated Akt (p-Akt) in the middle and high-dose groups; however, ZO-1 and occludin recovery were reduced with the presence of Akt inhibitor in WYP groups. WYP improved SC viability and proliferation, and ameliorated dedifferentiation and BTB-proteins damaged by heat stress via Akt signalling. The findings present theoretical support for the effects of WYP in the management of dyszoospermia and male infertility.
Collapse
Affiliation(s)
- Ya-Hui Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Rui Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dian-Long Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Dan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Hao Y, Xing M, Gu X. Research Progress on Oxidative Stress and Its Nutritional Regulation Strategies in Pigs. Animals (Basel) 2021; 11:1384. [PMID: 34068057 PMCID: PMC8152462 DOI: 10.3390/ani11051384] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress refers to the dramatic increase in the production of free radicals in human and animal bodies or the decrease in the ability to scavenging free radicals, thus breaking the antioxidation-oxidation balance. Various factors can induce oxidative stress in pig production. Oxidative stress has an important effect on pig performance and healthy growth, and has become one of the important factors restricting pig production. Based on the overview of the generation of oxidative stress, its effects on pigs, and signal transduction pathways, this paper discussed the nutritional measures to alleviate oxidative stress in pigs, in order to provide ideas for the nutritional research of anti-oxidative stress in pigs.
Collapse
Affiliation(s)
| | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (M.X.)
| |
Collapse
|
10
|
Guo Y, Chen H, Wang QJ, Qi X, Li Q, Fu W, Huang J, Yao CY, Liu ZY, Wang MZ, An L, Tian JH, Wu ZH. Prolonged melatonin treatment promote testicular recovery by enhancing RAC1-mediated apoptotic cell clearance and cell junction-dependent spermatogensis after heat stress. Theriogenology 2020; 162:22-31. [PMID: 33418161 DOI: 10.1016/j.theriogenology.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A decline in semen quality caused by global warming and torrid working conditions is a major cause of human male infertility, and heat stress-induced decreases in male reproductive ability results in economic losses in livestock husbandry. Increasing evidence suggests that melatonin exerts protective effects on stress-induced DNA damage and apoptosis in germ cells. However, few studies have assessed the effects of melatonin on testicular recovery during post-heat stress and the underlying mechanisms. METHODS AND RESULTS In vivo studies using 8-week-old male CD-1 mice revealed that melatonin pretreatment (50 mg/kg for 5 days) did not alleviate heat stress-induced germ cell loss and disrupted testicular histomorphology, however, long-term melatonin administration after heat stress accelerated germ cell apoptosis, spermatogenic cell regeneration, and testicular weight recovery. In vitro studies demonstrated that melatonin enhanced RAC1 activity, resulting in increased phagocytosis of apoptotic germ cells by Sertoli cells. In addition, melatonin restored gap junctions and tight junctions after heat stress, thereby promoting hollow seminiferous tubule filling. DISCUSSION Long-term melatonin administration accelerated testicular recovery after heat stress by enhancing the phagocytotic activity of Sertoli cells and the regeneration of spermatogenic cells. This finding suggests that melatonin is a potential therapeutic for heat stress-induced male infertility.
Collapse
Affiliation(s)
- Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Qiang-Jun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Qi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chun-Yan Yao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhong-Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mei-Zhi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian-Hui Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhong-Hong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Remote Ischemic Post-Conditioning Therapy is Protective in Mouse Model of Traumatic Optic Neuropathy. Neuromolecular Med 2020; 23:371-382. [PMID: 33185833 DOI: 10.1007/s12017-020-08631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Traumatic optic neuropathy (TON) is characterized by visual dysfunction after indirect or direct injury to the optic nerve following blunt head trauma. TON is associated with increased oxidative stress and inflammation resulting in retinal ganglion cell (RGC) death. Remote ischemic post-conditioning (RIC) has been shown to enhance endogenous protective mechanisms in diverse disease models including stroke, vascular cognitive impairment (VCI), retinal injury and optic nerve injury. However, the protective mechanisms underlying the improvement of retinal function and RGC survival after RIC treatment remain unclear. Here, we hypothesized that RIC therapy may be protective following TON by preventing RGC death, oxidative insult and inflammation in the mouse retina. To carry out the study, mice were divided in three different groups (Control, TON and TON + RIC). We harvested retinal tissue 5 days after TON induction for western blotting and histochemical analysis. We observed increased TON-induced retinal cell death compared with controls by cleaved caspase-3 immunohistochemistry. Furthermore, the TON cohort demonstrated increased TUNEL positive cells which were significantly attenuated by RIC. Immunofluorescence data showed that oxidative stress markers dihydroethidium (DHE), NOX-2 and nitrotyrosine expression were elevated in the TON group relative to controls and RIC therapy significantly reduced the expression level of these markers. Next, we found that the proinflammatory cytokine TNF-α was increased and anti-inflammatory IL-10 was decreased in plasma of TON animals, and RIC therapy reversed this expression level. Interestingly, western blotting of retinal tissue showed that RGC marker Brn3a and tight junction proteins (ZO-1 and Occludin), and AMPKα1 expression were downregulated in the TON group compared to controls. However, RIC significantly increased the expression levels of these proteins. Together these data suggest that RIC therapy activates endogenous protective mechanisms which may attenuate TON-induced oxidative stress and inflammation, and improves BRB integrity.
Collapse
|
12
|
Zou L, Cheng G, Xu C, Liu H, Wang Y, Li N, Zhu C, Xia W. The role of miR-128-3p through MAPK14 activation in the apoptosis of GC2 spermatocyte cell line following heat stress. Andrology 2020; 9:665-672. [PMID: 33089633 DOI: 10.1111/andr.12923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND MicroRNAs play a crucial role in the regulation of spermatogenesis. For example, miR-128-3p expression is known to decrease significantly after testicular hyperthermia, but the regulatory effect of this change on the spermatogenesis damage caused by heat stress remains unclear. OBJECTIVES This study aimed to verify whether the target gene of miR-128-3p is MAPK14, which affects spermatogenic cell proliferation and apoptosis under testicular hyperthermia. MATERIALS AND METHODS Mouse testis and GC2 spermatocyte cell line heat stress models were established. miR-128-3p expression before and after heat stress was analyzed by reverse transcription polymerase chain reaction. MAPK14 and p-MAPK14 expression was detected by Western blot, and cell apoptosis was analyzed by Annexin V-FITC/PI. Subsequently, miR-128-3p inhibitors and mimics were used to interfere with spermatocytes before and after heat stress, respectively, for correlation detection. RESULTS Compared with the control group, the heat stress group showed decreased miR-128-3p expression, increased p-MAPK14 expression, and decreased cell proliferation activity. In the GC2-spd cell line in vitro, miR-128-3p inhibitors were found to upregulate p-MAPK14 expression, reduce cell proliferation activity, and increase apoptosis, consistent with the results obtained in the heat treatment alone. Furthermore, miR-128-3p mimics transfected in the GC2 cells after heat stress reduced p-MAPK14 expression, alleviated the decrease in cell proliferation, and decreased the apoptosis level. CONCLUSIONS The downregulation of miR-128-3p expression plays an important role in spermatogenesis damages after testicular hyperthermia, which is probably attributable to the activation of the MAPK signaling pathway. Downregulated miR-128-3p expression induces the apoptosis and inhibits the proliferation of spermatogenic cells by promoting MAPK14 phosphorylation.
Collapse
Affiliation(s)
- Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiping Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianyu Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Yang WR, Li BB, Hu Y, Zhang L, Wang XZ. Oxidative stress mediates heat-induced changes of tight junction proteins in porcine sertoli cells via inhibiting CaMKKβ-AMPK pathway. Theriogenology 2019; 142:104-113. [PMID: 31586867 DOI: 10.1016/j.theriogenology.2019.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Heat stress causes reversible changes in tight junction proteins in immature Sertoli cells via inhibition of the AMPK signaling pathway; these effects are accompanied by an increase in the early apoptotic rate and decrease in the cell viability of Sertoli cells. Since heat stress is known to also cause oxidative damage, in the present study, we investigated whether the earlier mentioned effects of heat stress were brought about via the induction of oxidative stress in boar Sertoli cells. Immature Sertoli cells obtained from 3-week-old piglets were subjected to heat treatment (43 °C, 30 min), and the percentage of ROS-positive cells, the malonaldehyde (MDA) concentration, and the activity of the antioxidases, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were measured. Next, the Sertoli cells were treated with N-acetyl-l-cysteine (NAC) (1 mmol/L, 2 h), an antioxidant agent, before they were exposed to heat stress. The effects of NAC on ROS accumulation, MDA levels, antioxidase activity, the CaMKKβ-AMPK signaling pathway and expression of tight junction proteins were assessed. The results showed that heat stress reversibly increased the percentage of ROS-positive cells and MDA levels, and decreased the activity of SOD, GSH-Px, and CAT. Pretreatment with NAC abrogated these effects of heat stress. Additionally, NAC reversed the heat stress-induced decrease in the expression of CaMKKβ and dephosphorylation of AMPK. NAC also obviously rescued the heat stress-induced downregulation of tight junction proteins (claudin-11, JAM-A, occludin, and ZO-1) both at the mRNA and protein level. In conclusion, the findings indicate that oxidative damage participates in heat stress-induced downregulation of tight junction proteins in Sertoli cells by inhibiting the CaMKKβ-AMPK axis. Further, NAC reversed the effects of heat stress on tight junction proteins; this means that it has potential as a protective agent that can prevent reproductive dysfunction in boars under conditions of heat stress.
Collapse
Affiliation(s)
- Wei-Rong Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China; Institute of Ecological Research, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637002, PR China
| | - Bin-Bin Li
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China
| | - Long Zhang
- Institute of Ecological Research, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, 637002, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
14
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|