1
|
Samiec M. Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?-Current Status, Further Progress and Future Challenges. Int J Mol Sci 2024; 25:13675. [PMID: 39769437 PMCID: PMC11679799 DOI: 10.3390/ijms252413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Taking into consideration recent reports on the successful creation of cloned rhesus monkeys [...].
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
| |
Collapse
|
2
|
Machaty Z. The signal that stimulates mammalian embryo development. Front Cell Dev Biol 2024; 12:1474009. [PMID: 39355121 PMCID: PMC11442298 DOI: 10.3389/fcell.2024.1474009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Embryo development is stimulated by calcium (Ca2+) signals that are generated in the egg cytoplasm by the fertilizing sperm. Eggs are formed via oogenesis. They go through a cell division known as meiosis, during which their diploid chromosome number is halved and new genetic combinations are created by crossing over. During formation the eggs also acquire cellular components that are necessary to produce the Ca2+ signal and also, to support development of the newly formed embryo. Ionized calcium is a universal second messenger used by cells in a plethora of biological processes and the eggs develop a "toolkit", a set of molecules needed for signaling. Meiosis stops twice and these arrests are controlled by a complex interaction of regulatory proteins. The first meiotic arrest lasts until after puberty, when a luteinizing hormone surge stimulates meiotic resumption. The cell cycle proceeds to stop again in the middle of the second meiotic division, right before ovulation. The union of the female and male gametes takes place in the oviduct. Following gamete fusion, the sperm triggers the release of Ca2+ from the egg's intracellular stores which in mammals is followed by repetitive Ca2+ spikes known as Ca2+ oscillations in the cytosol that last for several hours. Downstream sensor proteins help decoding the signal and stimulate other molecules whose actions are required for proper development including those that help to prevent the fusion of additional sperm cells to the egg and those that assist in the release from the second meiotic arrest, completion of meiosis and entering the first mitotic cell division. Here I review the major steps of egg formation, discuss the signaling toolkit that is essential to generate the Ca2+ signal and describe the steps of the signal transduction mechanism that activates the egg's developmental program and turns it into an embryo.
Collapse
Affiliation(s)
- Zoltan Machaty
- Department of Animal Sciences Purdue University West Lafayette, West Lafayette, IN, United States
| |
Collapse
|
3
|
Briski O, Cabeza JP, Salamone DF, Fernández-Martin R, Gambini A. Efficiency of the zinc chelator 1,10-phenanthroline for assisted oocyte activation following ICSI in pigs. Reprod Fertil Dev 2024; 36:RD24129. [PMID: 39270059 DOI: 10.1071/rd24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Context In vitro embryo production in pigs is an important tool for advancing biomedical research. Intracytoplasmic sperm injection (ICSI) circumvents the polyspermy problems associated with conventional IVF in porcine. However, the suboptimal efficiency for ICSI in pigs requires new strategies to increase blastocyst formation rates. Aim To investigate novel methods for assisted activation using the zinc chelator 1,10-phenanthroline (PHEN), and to improve embryo developmental competence and quality of ICSI porcine blastocyst. Methods ICSI embryos were treated with PHEN after or before sperm injection, recording pronuclear formation, blastocyst rate and the expression of SMARCA4, OCT4, SOX2 and CDX2. Key results Neither electrical nor PHEN significantly improves pronuclear formation rates before or after ICSI. Following in vitro culture to the blastocyst stage, no significant differences were observed in developmental rates among the groups. Moreover, the use of PHEN did not alter the total cell number or the expression of OCT4, SOX2 and CDX2 in pig ICSI blastocysts. Conclusions Assisted oocyte activation with PHEN does not affect the preimplantation development of ICSI-derived pig embryos. Implications These results hold significance in refining and advancing the application of assisted oocyte activation techniques. They offer insights into addressing fertility issues and propelling advancements in human and animal reproductive medicine.
Collapse
Affiliation(s)
- Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan P Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Rafael Fernández-Martin
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Qld 4343, Australia; and School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| |
Collapse
|
4
|
Bellido-Quispe DK, Arcce IML, Pinzón-Osorio CA, Campos VF, Remião MH. Chemical activation of mammalian oocytes and its application in camelid reproductive biotechnologies: A review. Anim Reprod Sci 2024; 266:107499. [PMID: 38805838 DOI: 10.1016/j.anireprosci.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Mammalian oocyte activation is a critical process occurring post-gamete fusion, marked by a sequence of cellular events initiated by an upsurge in intracellular Ca2+. This surge in calcium orchestrates the activation/deactivation of specific kinases, leading to the subsequent inactivation of MPF and MAPK activities, alongside PKC activation. Despite various attempts to induce artificial activation using distinct chemical compounds as Ca2+ inducers and/or Ca2+-independent agents, the outcomes have proven suboptimal. Notably, incomplete suppression of MPF and MAPK activities persists, necessitating a combination of different agents for enhanced efficiency. Moreover, the inherent specificity of activation methods for each species precludes straightforward extrapolation between them. Consequently, optimization of protocols for each species and for each technique, such as PA, ICSI, and SCNT, is required. Despite recent strides in camelid biotechnologies, the field has seen little advancement in chemical activation methods. Only a limited number of chemical agents have been explored, and the effects of many remain unknown. In ICSI, despite obtaining blastocysts with different chemical compounds that induce Ca2+ and calcium-independent increases, viable offspring have not been obtained. However, SCNT has exhibited varying outcomes, successfully yielding viable offspring with a reduced number of chemical activators. This article comprehensively reviews the current understanding of the physiological activation of oocytes and the molecular mechanisms underlying chemical activation in mammals. The aim is to transfer and apply this knowledge to camelid reproductive biotechnologies, with emphasis on chemical activation in PA, ICSI, and SCNT.
Collapse
Affiliation(s)
| | | | - César Augusto Pinzón-Osorio
- Laboratório de Fisiopatologia e Biotécnicas da Reprodução Animal (FiBRA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
5
|
Bellido-Quispe DK, Mujica Lengua FR, Contreras Huamani M, Palomino JM. Effect of chemical activators after intracytoplasmic sperm injection (ICSI) on embryo development in alpacas. Anim Reprod Sci 2024; 263:107432. [PMID: 38401395 DOI: 10.1016/j.anireprosci.2024.107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Low motility and low sperm concentration are characteristics of alpaca semen. Thus, the intracytoplasmic sperm injection (ICSI) technique represents an alternative to improve the reproductive capacity of the male. However, the effect of post-ICSI activation in alpaca is not yet known. The aim of the present study was to compare the effect of chemical activators on alpaca embryo development after ICSI. Alpaca ovaries were collected from a local slaughterhouse and transported to the laboratory. Category I, II and III oocytes were matured for 30 h at 38.5 °C. After ICSI, injected oocytes were randomly divided and activated as follows: i) 5 μM ionomycin for 5 min, ii) 7% ethanol for 4 min, iii) 5 μM ionomycin for 5 min, window period 3 h plus 7% ethanol for 4 min, iv) 5 μM ionomycin for 5 min, window period 3 h, a second ionomycin treatment for 5 min, followed by 1.9 mM 6-DMAP for 3 h, v) 10 mM SrCl2 for 3 h. Culture was carried out for 5 days in SOFaa at 38.5 °C. The cleavage rate was the lowest in the SrCl2 group, morula development was the lowest in the SrCl2 and without activation groups, and blastocyst stage was not different between groups (P<0.05). The rates with SrCl2 were lower in total embryos produced, whereas in transferable embryos they were lower with 2Io/6-DMAP and with SrCl2 (P<0.05). In conclusion, alpaca oocyte activation is more efficient with ionomycin and ethanol to produce transferable embryos.
Collapse
Affiliation(s)
- Dionet Keny Bellido-Quispe
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru.
| | - Fidel Rodolfo Mujica Lengua
- Universidad Nacional de San Cristóbal de Huamanga, Facultad de Ciencias Biológicas, Laboratorio de Biotecnología, Ayacucho, Peru
| | - Mijaíl Contreras Huamani
- Instituto Nacional de Innovación Agraria, Estación Experimental Agraria Canaán, Laboratorio de Biotecnología Reproductiva, Ayacucho, Peru
| | - J Manuel Palomino
- Universidad Científica del Sur, Carrera de Medicina Veterinaria y Zootecnica, Lima, Peru
| |
Collapse
|
6
|
Dong Z, Zhang L, Wang W, Jiang F, Ai H. ZnSO 4 Protects against premature ovarian failure through PI3K/AKT/GSK3β signaling pathway. Theriogenology 2023; 207:61-71. [PMID: 37269597 DOI: 10.1016/j.theriogenology.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Zinc (Zn) is an essential trace element with anti-inflammatory and antioxidant effects and plays a crucial role in the female reproductive system. We aimed to investigate the protective effect of ZnSO4 on premature ovarian failure (POF) in SD rats and granulosa cells (GCs) treated with cisplatin. We also explored the underlying mechanisms. In vivo experiments showed that ZnSO4 increased the serum levels of Zn2+, increased estrogen (E2) secretion, and decreased follicle-stimulating hormone (FSH) secretion in rats. ZnSO4 increased ovarian index, protected ovarian tissues and blood vessels, reduced excessive follicular atresia, and maintained follicular development. At the same time, ZnSO4 inhibited apoptosis in the ovaries. In vitro experiments showed that ZnSO4 combination treatment restored the intracellular levels of Zn2+ and inhibited the apoptosis of GCs. ZnSO4 inhibited cisplatin-induced reactive oxygen species (ROS) production and preserved mitochondrial membrane potential (MMP). We also found that ZnSO4 protected against POF by activating the PI3K/AKT/GSK3β signaling pathway and reducing apoptosis of GCs. These data suggest that ZnSO4 may be a potential therapeutic agent for protecting the ovaries and preserving fertility during chemotherapy.
Collapse
Affiliation(s)
- Zhe Dong
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Zhang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan Jiang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Ai
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
7
|
Abdulsamad HMR, Murtaza ZF, AlMuhairi HM, Bafleh WS, AlMansoori SA, AlQubaisi SA, Hamdan H, Kashir J. The Therapeutic and Diagnostic Potential of Phospholipase C Zeta, Oocyte Activation, and Calcium in Treating Human Infertility. Pharmaceuticals (Basel) 2023; 16:441. [PMID: 36986540 PMCID: PMC10056371 DOI: 10.3390/ph16030441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Oocyte activation, a fundamental event during mammalian fertilisation, is initiated by concerted intracellular patterns of calcium (Ca2+) release, termed Ca2+ oscillations, predominantly driven by testis-specific phospholipase C zeta (PLCζ). Ca2+ exerts a pivotal role in not just regulating oocyte activation and driving fertilisation, but also in influencing the quality of embryogenesis. In humans, a failure of Ca2+ release, or defects in related mechanisms, have been reported to result in infertility. Furthermore, mutations in the PLCζ gene and abnormalities in sperm PLCζ protein and RNA, have been strongly associated with forms of male infertility where oocyte activation is deficient. Concurrently, specific patterns and profiles of PLCζ in human sperm have been linked to parameters of semen quality, suggesting the potential for PLCζ as a powerful target for both therapeutics and diagnostics of human fertility. However, further to PLCζ and given the strong role played by Ca2+ in fertilisation, targets down- and up-stream of this process may also present a significantly similar level of promise. Herein, we systematically summarise recent advancements and controversies in the field to update expanding clinical associations between Ca2+-release, PLCζ, oocyte activation and human fertility. We discuss how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic avenues presented by oocyte activation for the diagnosis and treatment of human infertility.
Collapse
Affiliation(s)
- Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Zoha F. Murtaza
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hessa M. AlMuhairi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Salma A. AlMansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shaikha A. AlQubaisi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| |
Collapse
|
8
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Cabeza JP, Cámera J, Briski O, Felipe MY, Salamone DF, Gambini A. Preimplantation Developmental Competence of Bovine and Porcine Oocytes Activated by Zinc Chelation. Animals (Basel) 2022; 12:ani12243560. [PMID: 36552480 PMCID: PMC9774810 DOI: 10.3390/ani12243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
After sperm-oocyte fusion, intracytoplasmic rises of calcium (Ca) induce the release of zinc (Zn) out of the oocyte (Zn sparks). Both phenomena are known to play an essential role in the oocyte activation process. Our work aimed to explore different protocols for activating bovine and porcine oocytes using the novel zinc chelator 1,10-phenanthroline (PHEN) and to compare developmental rates and quality to bovine IVF and parthenogenetic ionomycin-induced embryos in both species. Different incubation conditions for the zinc chelator were tested, including its combination with ionomycin. Embryo quality was assessed by immunofluorescence of SOX2, SOX17, OCT4, and CDX2 and total cell number at the blastocyst stage. Even though blastocyst development was achieved using a zinc chelator in bovine, bypassing calcium oscillations, developmental rates, and blastocyst quality were compromised compared to embryos generated with sperm-induced or ionomycin calcium rise. On the contrary, zinc chelation is sufficient to trigger oocyte activation in porcine. Additionally, we determined the optimal exposure to PHEN for this species. Zinc chelation and artificial induction of calcium rise combined did not improve developmental competence. Our results contribute to understanding the role of zinc during oocyte activation and preimplantation embryo development across different mammalian species.
Collapse
Affiliation(s)
- Juan P. Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan Cámera
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Minerva Yauri Felipe
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F. Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia
- Correspondence:
| |
Collapse
|
10
|
Kashir J, Ganesh D, Jones C, Coward K. OUP accepted manuscript. Hum Reprod Open 2022; 2022:hoac003. [PMID: 35261925 PMCID: PMC8894871 DOI: 10.1093/hropen/hoac003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Oocyte activation deficiency (OAD) is attributed to the majority of cases underlying failure of ICSI cycles, the standard treatment for male factor infertility. Oocyte activation encompasses a series of concerted events, triggered by sperm-specific phospholipase C zeta (PLCζ), which elicits increases in free cytoplasmic calcium (Ca2+) in spatially and temporally specific oscillations. Defects in this specific pattern of Ca2+ release are directly attributable to most cases of OAD. Ca2+ release can be clinically mediated via assisted oocyte activation (AOA), a combination of mechanical, electrical and/or chemical stimuli which artificially promote an increase in the levels of intra-cytoplasmic Ca2+. However, concerns regarding safety and efficacy underlie potential risks that must be addressed before such methods can be safely widely used. OBJECTIVE AND RATIONALE Recent advances in current AOA techniques warrant a review of the safety and efficacy of these practices, to determine the extent to which AOA may be implemented in the clinic. Importantly, the primary challenges to obtaining data on the safety and efficacy of AOA must be determined. Such questions require urgent attention before widespread clinical utilization of such protocols can be advocated. SEARCH METHODS A literature review was performed using databases including PubMed, Web of Science, Medline, etc. using AOA, OAD, calcium ionophores, ICSI, PLCζ, oocyte activation, failed fertilization and fertilization failure as keywords. Relevant articles published until June 2019 were analysed and included in the review, with an emphasis on studies assessing large-scale efficacy and safety. OUTCOMES Contradictory studies on the safety and efficacy of AOA do not yet allow for the establishment of AOA as standard practice in the clinic. Heterogeneity in study methodology, inconsistent sample inclusion criteria, non-standardized outcome assessments, restricted sample size and animal model limitations render AOA strictly experimental. The main scientific concern impeding AOA utilization in the clinic is the non-physiological method of Ca2+ release mediated by most AOA agents, coupled with a lack of holistic understanding regarding the physiological mechanism(s) underlying Ca2+ release at oocyte activation. LIMITATIONS, REASONS FOR CAUTION The number of studies with clinical relevance using AOA remains significantly low. A much wider range of studies examining outcomes using multiple AOA agents are required. WIDER IMPLICATIONS In addition to addressing the five main challenges of studies assessing AOA safety and efficacy, more standardized, large-scale, multi-centre studies of AOA, as well as long-term follow-up studies of children born from AOA, would provide evidence for establishing AOA as a treatment for infertility. The delivery of an activating agent that can more accurately recapitulate physiological fertilization, such as recombinant PLCζ, is a promising prospect for the future of AOA. Further to PLCζ, many other avenues of physiological oocyte activation also require urgent investigation to assess other potential physiological avenues of AOA. STUDY FUNDING/COMPETING INTERESTS D.G. was supported by Stanford University’s Bing Overseas Study Program. J.K. was supported by a Healthcare Research Fellowship Award (HF-14-16) made by Health and Care Research Wales (HCRW), alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST). The authors have no competing interests to declare.
Collapse
Affiliation(s)
| | | | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Correspondence address. Nuffield Department of Women’s & Reproductive Health, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Oxford, OS3 9DU, UK. E-mail: https://orcid.org/0000-0003-3577-4041
| |
Collapse
|
11
|
Uh K, Hay A, Chen P, Reese E, Lee K. Design of novel oocyte activation methods: The role of zinc. Biol Reprod 2021; 106:264-273. [PMID: 34935887 DOI: 10.1093/biolre/ioab235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Oocyte activation occurs at the time of fertilization and is a series of cellular events initiated by intracellular Ca2+ increases. Consequently, oocytes are alleviated from their arrested state in meiotic metaphase II (MII), allowing for the completion of meiosis. Oocyte activation is also an essential step for somatic cell nuclear transfer (SCNT) and an important tool to overcome clinical infertility. Traditional artificial activation methods aim to mimic the intracellular Ca2+ changes which occur during fertilization. Recent studies emphasize the importance of cytoplasmic Zn2+ on oocyte maturation and the completion of meiosis, thus suggesting artificial oocyte activation approaches that are centered around the concentration of available Zn2+in oocytes. Depletion of intracellular Zn2+ in oocytes with heavy metal chelators leads to successful oocyte activation in the absence of cellular Ca2+ changes, indicating that successful oocyte activation does not always depends on intracellular Ca2+ increases. Current findings lead to new approaches to artificially activate mammalian oocytes by reducing available Zn2+ contents, and the approaches improve the outcome of oocyte activation when combined with existing Ca2+ based oocyte activation methods. Here, we review the important role of Ca2+ and Zn2+ in mammalian oocyte activation and development of novel oocyte activation approaches based on Zn2+ availability.
Collapse
Affiliation(s)
- Kyungjun Uh
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Alayna Hay
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Paula Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Emily Reese
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Kiho Lee
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65201, USA
| |
Collapse
|
12
|
Zuidema D, Sutovsky P. The domestic pig as a model for the study of mitochondrial inheritance. Cell Tissue Res 2019; 380:263-271. [DOI: 10.1007/s00441-019-03100-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
|
13
|
Shaoyong W, Li Q, Ren Z, Xiao J, Diao Z, Yang G, Pang W. Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17 C. Theriogenology 2019; 140:124-135. [PMID: 31473495 DOI: 10.1016/j.theriogenology.2019.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Bacteriospermia is a documented risk to sperm quality when boar semen is stored at 17 °C. The objective of this study was to evaluate the effects of kojic acid (KA) on sperm quality and anti-bacterial effect during liquid storage boar semen at 17 °C, as well as to explore sperm-oocyte binding and embryonic development in vitro. Boar semen was diluted with Beltsville thawing solution (BTS), and it contained KA at different concentrations (0, 0.02, 0.04, 0.06, 0.08, and 0.10 g/L). Bacterial concentrations and sperm quality parameters (motility, mitochondrial membrane potential, acrosome integrity, and plasma membrane integrity) were evaluated on each experimental day. Differences in microbial compositions were compared using 16S rDNA sequencing among the control group, 0.04 g/L KA, and 0.25 g/L gentamycin groups on experimental day 5, and the effects of KA on sperm capacitation, Western blot, total anti-oxidant capacity (T-AOC), reactive oxygen species (ROS) content, malondialdehyde (MDA) content, in vitro fertilization (IVF) parameters, sperm-oocyte binding, cleavage rates, and blastocyst rates were evaluated. The results showed that KA at the optimum concentration of 0.04 g/L significantly improved sperm quality parameters and sperm capacitation, increased T-AOC ability, enhanced IVF parameters and sperm-oocyte binding, increased cleavage and blastocyst rates, inhibited bacterial concentrations, reduced ROS and MDA content, and altered bacterial compositions (P < 0.05). Moreover, KA also increased the expression of anti-oxidant-related proteins, SOD1, SOD2 and CAT, and anti-apoptosis-related protein, Bcl 2, and decreased the expression of apoptosis-related proteins, caspase 3 and Bax in sperm (P < 0.05). These findings demonstrated that supplementation of antibiotic-free extenders for boar semen with 0.04 g/L KA has beneficial effects on liquid boar sperm preservation.
Collapse
Affiliation(s)
- Weike Shaoyong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiqiang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoxi Diao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|