1
|
Palta P, Selokar NL, Chauhan MS. Production of Water Buffalo SCNT Embryos by Handmade Cloning. Methods Mol Biol 2023; 2647:245-258. [PMID: 37041339 DOI: 10.1007/978-1-0716-3064-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Cloning by somatic cell nuclear transfer (SCNT) involves the transfer of a somatic nucleus into an enucleated oocyte followed by chemical activation and embryo culture. Further, handmade cloning (HMC) is a simple and efficient SCNT method for large-scale embryo production. HMC does not require micromanipulators for oocyte enucleation and reconstruction since these steps are carried out using a sharp blade controlled by hand under a stereomicroscope. In this chapter, we review the status of HMC in the water buffalo (Bubalus bubalis) and further describe a protocol for the production of buffalo-cloned embryos by HMC and assays to estimate their quality.
Collapse
Affiliation(s)
- Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Naresh L Selokar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Manmohan S Chauhan
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
2
|
Sabry R, Williams M, Werry N, LaMarre J, Favetta LA. BPA Decreases PDCD4 in Bovine Granulosa Cells Independently of miR-21 Inhibition. Int J Mol Sci 2022; 23:ijms23158276. [PMID: 35955412 PMCID: PMC9368835 DOI: 10.3390/ijms23158276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs (miRNAs) are susceptible to environmental factors that might affect cellular function and impose negative effects on female reproduction. miR-21 is the most abundant miRNA in bovine granulosa cells and is widely reported as affected by Bisphenol A (BPA) exposure, yet the cause and consequences are not entirely elucidated. BPA is a synthetic endocrine disruptor associated with poor fertility. miR-21 function in bovine granulosa cells is investigated utilizing locked nucleic acid (LNA) oligonucleotides to suppress miR-21. Before measuring apoptosis and quantifying miR-21 apoptotic targets PDCD4 and PTEN, transfection was optimized and validated. BPA was introduced to see how it affects miR-21 regulation and which BPA-mediated effects are influenced by miR-21. miR-21 knockdown and specificity against additional miRNAs were confirmed. miR-21 was found to have antiapoptotic effects, which could be explained by its effect on the proapoptotic target PDCD4, but not PTEN. Previous findings of miR-21 overexpression were validated using BPA treatments, and the temporal influence of BPA on miR-21 levels was addressed. Finally, BPA effects on upstream regulators, such as VMP1 and STAT3, explain the BPA-dependent upregulation of miR-21 expression. Overall, this research enhances our understanding of miR-21 function in granulosa cells and the mechanisms of BPA-induced reproductive impairment.
Collapse
|
3
|
Malpotra S, Goel P, Shyam S, Singh MK, Palta P. Global DNA methylation profiles of buffalo (Bubalus bubalis) preimplantation embryos produced by handmade cloning and in vitro fertilization. Sci Rep 2022; 12:5161. [PMID: 35338228 PMCID: PMC8956680 DOI: 10.1038/s41598-022-09207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Somatic cell nuclear transfer technique (SCNT) has proved to be an outstanding method of multiplication of elite animals but accompanied with low efficiency and live birth rate of cloned animals. Epigenetic alterations of DNA has been one of the culprits behind this issue. Cloned embryos are found to deviate slightly from regular pattern of demethylation and re-methylation at the time of nuclear reprogramming and embryonic development when compared with embryos produced by in vitro fertilization (IVF). Thus, the present study was aimed at evaluating global DNA methylation profiles of cloned embryos at 2-cell, 8-cell and blastocyst stages and compare it with corresponding stages of embryos produced by IVF by using MeDIP-Sequencing on Illumina-based platform. We found out that cloned embryos exhibited significantly different DNA methylation pattern as compared to IVF embryos with respect to distribution of differentially methylated regions in different components of genome, CpG islands distribution and methylation status, gene ontological profiles and pathways affected throughout the developmental stages. The data generated from MeDIP-Seq was validated at blastocyst stage cloned and IVF embryos by bisulfite-sequencing PCR on five randomly selected gene regions.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India.
| | - Pallavi Goel
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Songyukta Shyam
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| |
Collapse
|
4
|
Global MicroRNA Expression Profiling of Buffalo (Bubalus bubalis) Embryos at Different Developmental Stages Produced by Somatic Cell Nuclear Transfer and In-Vitro Fertilization Using RNA Sequencing. Genes (Basel) 2022; 13:genes13030453. [PMID: 35328007 PMCID: PMC8952793 DOI: 10.3390/genes13030453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Despite the success of cloning technology in the production of offspring across several species, its application on a wide scale is severely limited by the very low offspring rate obtained with cloned embryos. The expression profile of microRNAs (miRNAs) in cloned embryos throughout embryonic development is reported to deviate from regular patterns. The present study is aimed at determining the dynamics of the global expression of miRNA profile in cloned and in-vitro fertilization (IVF) pre-implantation embryos at different developmental stages, i.e., the two-cell, eight-cell, and blastocyst stages, using next-generation sequencing. The results of this study suggest that there is a profound difference in global miRNA profile between cloned and IVF embryos. These differences are manifested throughout the course of embryonic development. The cloned embryos differ from their IVF counterparts in enriched Gene Ontology (GO) terms of biological process, molecular function, cellular component, and protein class categories in terms of the targets of differentially expressed miRNAs. The major pathways related to embryonic development, such as the Wnt signaling pathway, the apoptosis signaling pathway, the FGF signaling pathway, the p53 pathway, etc., were found to be affected in cloned relative to IVF embryos. Overall, these data reveal the distinct miRNA profile of cloned relative to IVF embryos, suggesting that the molecules or pathways affected may play an important role in cloned embryo development.
Collapse
|
5
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
6
|
Malpotra S, Singh MK, Palta P. MeDIP-sequencing for profiling global DNA methylation in buffalo embryos produced by in vitro fertilization. Anim Biotechnol 2021:1-17. [PMID: 34612161 DOI: 10.1080/10495398.2021.1981356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Assisted reproductive technique like in vitro fertilization has contributed immensely in producing genetically improved livestock. Production of embryos under in vitro conditions can affect global DNA methylation pattern during the course of embryonic development. The present study is aimed at the generation and comparison of global DNA methylome of embryos at 2-cell, 8-cell and blastocyst stage of buffalo embryos produced by in vitro fertilization using MeDIP-Sequencing. It is observed that there is a profound difference in the global DNA methylation profile of IVF embryos at different developmental stages. These differences are manifested throughout the course of embryonic development. Pathways like Wnt signaling pathway, gonadotropin-releasing hormone receptor pathway and integrin signaling were found to be majorly affected by hypermethylation of DNA in IVF embryos throughout the development.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| |
Collapse
|
7
|
Sharma AK, Sah S, Singla SK, Chauhan MS, Manik RS, Palta P. Exposure to Pulsed Electromagnetic Fields Improves the Developmental Competence and Quality of Somatic Cell Nuclear Transfer Buffalo ( Bubalus bubalis) Embryos Produced Using Fibroblast Cells and Alters Their Epigenetic Status and Gene Expression. Cell Reprogram 2021; 23:304-315. [PMID: 34597162 DOI: 10.1089/cell.2021.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined the effects of treatment with pulsed electromagnetic fields (PEMFs) on cumulus cells and buffalo somatic cell nuclear transfer (SCNT) embryos. PEMF treatment (30 μT for 3 hours) of cumulus cells increased (p < 0.05) the relative cell viability and cell proliferation and the expression level of OCT4, NANOG, SOX2, P53, CCNB1, and GPX, but decreased (p < 0.05) that of DNMT1, DNMT3a, GSK3b, and BAX, whereas the expression level of DNMT3b, GLUT1, BCL2, CASPASE3, SOD1, and CATALASE was not affected. PEMF treatment of SCNT embryos at the beginning of in vitro culture increased (p < 0.05) the blastocyst rate (51.4% ± 1.36% vs. 42.8% ± 1.29%) and decreased (p < 0.01) the apoptotic index to the level in in vitro fertilization blastocysts, but did not significantly alter the total cell number and the inner cell mass:trophectoderm cell number ratio of blastocysts compared to the controls. PEMF treatment increased the expression level of NANOG, SOX2, CDX2, GLUT1, P53, and BCL2 and decreased that of BAX, CASPASE3, GSK3b, and HSP70, but not OCT4, DNMT1, DNMT3a, DNMT3b, HDAC1, and CCNB1 in blastocysts. It increased (p < 0.001) the global level of H3K27me3 but not H3K18ac. These results suggest that PEMF treatment of SCNT embryos improves their developmental competence, reduces the level of apoptosis, and alters the expression level of several important genes related to pluripotency, apoptosis, metabolism, and stress.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Shrutika Sah
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Radhey Shyam Manik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.,Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
8
|
Shyam S, Goel P, Kumar D, Malpotra S, Singh MK, Lathwal SS, Chand S, Palta P. Effect of Dickkopf-1 and colony stimulating factor-2 on the developmental competence, quality, gene expression and live birth rate of buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Theriogenology 2020; 157:254-262. [PMID: 32823021 DOI: 10.1016/j.theriogenology.2020.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023]
Abstract
A functional canonical WNT signaling pathway exists in preimplantation embryos and inhibits embryonic development. Recent studies suggest that this pathway is over-expressed in nuclear transferred (NT), compared to IVF embryos. The present study investigated the effects of Dickkopf-1 (DKK1), an inhibitor of canonical WNT signaling pathway and colony stimulating factor-2 (CSF2), an embryokine, on the developmental competence, quality, gene expression and live birth rate of NT buffalo embryos produced by Hand-made cloning (HMC). Following supplementation of the in vitro culture medium on day 5 with DKK1 (100 ng/mL), CSF2 (10 ng/mL), DKK1+CSF2 or no supplementation (control), the blastocyst rate was higher (P < 0.05) with DKK1 and DKK1+CSF2 (42.6 ± 1.4% and 46.6 ± 0.9%, respectively) than with CSF2 or controls (40.6 ± 1.3% and 39.0 ± 1.3%, respectively). The apoptotic index of the blastocysts was lower (P < 0.05) for DKK1, CSF2 and DKK1+CSF2 groups (3.44 ± 0.14, 3.39 ± 0.11 and 3.11 ± 0.22, respectively) compared to controls (6.64 ± 0.25), and was similar to that of the IVF blastocysts (3.67 ± 0.18). Although the total cell number was similar for the DKK1, CSF2, DKK1+CSF2 and control groups (200.4 ± 3.05, 196.4 ± 3.73, 204.7 ± 3.71 and 205 ± 4.03, respectively), the inner cell mass:trophectoderm cell number ratio of DKK1, CSF2 and DKK1+CSF2 groups (0.21 ± 0.01, 0.17 ± 0.01 and 0.22 ± 0.02, respectively) was higher (P < 0.05) than controls (0.13 ± 0.01) and was similar to that of IVF blastocysts (0.19 ± 0.01). Treatment with DKK1 or CSF2 or both increased (P < 0.05) the expression level of OCT4, NANOG,SOX2, GATA6, BCL2, PTEN, P53, FGF4, GLUT1 and IFN-τ, and decreased that of C-MYC, CDX2, CASPASE, DNMT3a, TCF7 and LEF1 in blastocysts, compared to controls. Transfer of DKK1-treated embryos to 13 recipients resulted in 4 pregnancies (30.8%; 2 live births, one abortion and one currently at 9 months of pregnancy) whereas, transfer of DKK1+CSF2-treated embryos to 16 recipients, resulted in 4 pregnancies (25.0%), all of which resulted in live births. No pregnancy was obtained after transfer of control and CSF-treated embryos to 12 and 16 recipients, respectively. These results suggest that DKK1 treatment of NT embryos increases the blastocyst, conception and live birth rate, and improves their quality whereas, CSF2 treatment, does not affect the blastocyst, conception and live birth rate despite improvement in embryo quality.
Collapse
Affiliation(s)
- S Shyam
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - P Goel
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - D Kumar
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S Malpotra
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - M K Singh
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S S Lathwal
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S Chand
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - P Palta
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|