1
|
Punetha M, Saini S, Choudhary S, Sharma S, Bala R, Kumar P, Sharma RK, Yadav PS, Datta TK, Kumar D. Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation. Theriogenology 2024; 229:158-168. [PMID: 39178617 DOI: 10.1016/j.theriogenology.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Genome editing is recognized as a powerful tool in agriculture and research, enhancing our understanding of genetic function, diseases, and productivity. However, its progress in buffaloes has lagged behind other mammals due to several challenges, including long gestational periods, single pregnancies, and high raising costs. In this study, we aimed to generate MSTN-edited buffaloes, known for their distinctive double-muscling phenotype, as a proof of concept. To meet our goal, we used somatic cell nuclear transfer (SCNT) and zygotic electroporation (CRISPR-EP) technique. For this, we firstly identified the best transfection method for introduction of RNP complex into fibroblast which was further used for SCNT. For this, we compared the transfection, cleavage efficiency and cell viability of nucleofection and lipofection in adult fibroblasts. The cleavage, transfection efficiency and cell viability of nucleofection group was found to be significantly (P ≤ 0.05) higher than lipofection group. Four MSTN edited colony were generated using nucleofection, out of which three colonies was found to be biallelic and one was monoallelic. Further, we compared the efficacy, embryonic developmental potential and subsequent pregnancy outcome of SCNT and zygotic electroporation. The blastocyst rate of electroporated group was found to be significantly (P ≤ 0.05) higher than SCNT group. However, the zygotic electroporation group resulted into two pregnancies which were confirmed to be MSTN edited. Since, the zygotic electroporation does not require complex micromanipulation techniques associated with SCNT, it has potential for facilitating the genetic modification in large livestock such as buffaloes. The present study lays the basis for inducing genetic alternation with practical or biological significance.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Suman Choudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
| |
Collapse
|
2
|
Ren R, Guo J, Liu G, Kang H, Machens HG, Schilling AF, Slobodianski A, Zhang Z. Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications. J Biol Eng 2022; 16:30. [PMID: 36329479 PMCID: PMC9635183 DOI: 10.1186/s13036-022-00309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The fibroblast is one of the ideal target cell candidates for cell-based gene therapy approaches to promote tissue repair. Gene delivery to fibroblasts by viral transfection has been confirmed to have high transfection efficiency. However, in addition to immunogenic effects of viruses, the random integration of viral genes may damage the genome, affect the cell phenotype or even cause cancerous mutations in the transfected cells. Due to these potential biohazards and unknown long-term risks, the clinical use of viral transfection has been very limited. In contrast, initial non-viral transfection methods have been simple and safe to implement, with low immunogenicity, insertional mutagenesis, and risk of carcinogenesis, but their transfection efficiency has been relatively low. Nucleofection, a more recent non-viral transfection method, now combines the advantages of high transfection efficiency and direct nucleic acid delivery to the nucleus with a high safety.Here, we reviewed recent articles on fibroblast nucleofection, summarized different research points, improved methods and application scopes, and opened up ideas for promoting the further improvement and development of fibroblast nucleofection to meet the needs of a variety of disease research and clinical applications.
Collapse
Affiliation(s)
- Ranyue Ren
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Jiachao Guo
- grid.412793.a0000 0004 1799 5032Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Guangwu Liu
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hao Kang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hans-Günther Machens
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Arndt F. Schilling
- grid.411984.10000 0001 0482 5331Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Alex Slobodianski
- grid.15474.330000 0004 0477 2438Department of Plastic Surgery and Hand Surgery, Faculty of Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Ziyang Zhang
- grid.412793.a0000 0004 1799 5032Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
3
|
Vats P, Kaushik R, Rawat N, Sharma A, Sharma T, Dua D, Singh MK, Palta P, Singla SK, Manik RS, Chauhan MS. Production of Transgenic Handmade Cloned Goat ( Capra hircus) Embryos by Targeted Integration into Rosa 26 Locus Using Transcription Activator-like Effector Nucleases. Cell Reprogram 2021; 23:250-262. [PMID: 34348041 DOI: 10.1089/cell.2021.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic goats are ideal bioreactors for the production of therapeutic proteins in their mammary glands. However, random integration of the transgene within-host genome often culminates in unstable expression and unpredictable phenotypes. Targeting desired genes to a safe locus in the goat genome using advanced targeted genome-editing tools, such as transcription activator-like effector nucleases (TALENs) might assist in overcoming these hurdles. We identified Rosa 26 locus, a safe harbor for transgene integration, on chromosome 22 in the goat genome for the first time. We further demonstrate that TALEN-mediated targeting of GFP gene cassette at Rosa 26 locus exhibited stable and ubiquitous expression of GFP gene in goat fetal fibroblasts (GFFs) and after that, transgenic cloned embryos generated by handmade cloning (HMC). The transfection of GFFs by the TALEN pair resulted in 13.30% indel frequency at the target site. Upon cotransfection with TALEN and donor vectors, four correctly targeted cell colonies were obtained and all of them showed monoallelic gene insertions. The blastocyst rate for transgenic cloned embryos (3.92% ± 1.12%) was significantly (p < 0.05) lower than cloned embryos (7.84% ± 0.68%) used as control. Concomitantly, 2 out of 15 embryos of morulae and blastocyst stage (13.30%) exhibited site-specific integration. In conclusion, the present study demonstrates TALEN-mediated transgene integration at Rosa 26 locus in caprine fetal fibroblasts and the generation of transgenic cloned embryos using HMC.
Collapse
Affiliation(s)
- Preeti Vats
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Ramakant Kaushik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Nidhi Rawat
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Ankur Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Diksha Dua
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
4
|
Feng Y, Zhao X, Li Z, Luo C, Ruan Z, Xu J, Shen P, Deng Y, Jiang J, Shi D, Lu F. Histone Demethylase KDM4D Could Improve the Developmental Competence of Buffalo ( Bubalus Bubalis) Somatic Cell Nuclear Transfer (SCNT) Embryos. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:409-419. [PMID: 33478599 DOI: 10.1017/s1431927620024964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
Collapse
Affiliation(s)
- Yun Feng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Xin Zhao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
- Center of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning530003, P.R. China
| | - Zhengda Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Ziyun Ruan
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jie Xu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Penglei Shen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jianrong Jiang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| |
Collapse
|
5
|
Suwik K, Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Staszkiewicz-Chodor J, Woclawek-Potocka I. Expression profile of developmental competence gene markers in comparison with prostaglandin F 2α synthesis and action in the early- and late-cleaved pre-implantation bovine embryos. Reprod Domest Anim 2021; 56:437-447. [PMID: 33320992 DOI: 10.1111/rda.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
The kinetics of early cleavage stages can affect embryo quality. The bovine model of early- and late-cleaved embryos has been described in the literature and is deemed a useful tool in the field of oocyte developmental competence studies. The expression of genes demonstrating developmental potential differs between early- and late-cleaved embryos. Previously, we demonstrated that prostaglandin F2α synthase (PGFS) and prostaglandin F2α receptor (PTGFR) expression depend on the developmental stage and embryo quality. In the present study, we used the same model to determine the mRNA expression profile of developmentally important genes (IGF1R, IGF2R, PLAC8, OCT4, SOX2) in early, expanded and hatched blastocysts obtained from the early- and late-cleaved group of embryos, as well as to correlate the transcription levels of these embryonic gene markers with the transcription levels of PGFS and PTGFR. The mRNA expression of PGFS, PTGFR and factors described as gene markers of embryonic implantation ability and developmental competence genes was determined by real-time PCR. The obtained results were analysed using statistical software GraphPad prism 6.05. During the course of our analyses, we observed that the transcript abundance of most analysed genes tends to be higher in the late-rather than in the early cleaved group of embryos, as well as in B and/or C grade embryos rather than in A grade embryos. On the other hand, for the early cleaved group of blastocysts with cavity, we detected higher PLAC8 mRNA expression for grade A embryos compared with grade C embryos. It suggests that the mRNA expression level of genes depends on the quality of embryos but differs according to various factors including the method of production or culture method. Moreover, numerous correlations between analysed gene markers and PGF2α synthase and PGF2α receptor suggest that PGF2α plays a role in the crucial steps of bovine embryo development.
Collapse
Affiliation(s)
- Katarzyna Suwik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
SHARMA A, KUMARESAN A, NALA N, TIWARI M, ROSHAN M, SINGH MK, PALTA P, SINGLA SK, MANIK RS, CHAUHAN MS. Homologous transplantation of fluorescently labelled enriched buffalo (Bubalus bubalis) spermatogonial stem cells to prepubertal recipients. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i5.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spermatogonial stem cell transplantation provides a unique opportunity to study the biology of spermatogenesis and also offers an alternative approach for genetic modification in large animals. The present study aimed to extend this technique to the water buffalo. Spermatogonial stem cells (SSCs) were isolated from prepubertal buffalo testes (3-6 months of age) using two-step enzymatic digestion method and enriched by differential plating and Percoll density gradient centrifugation. The enriched SSCs expressed numerous spermatogonial transcriptional markers, viz. ID4, THY1, BCL6B, UCHL1, ETV5 and REX1 which confirmed their bonafide SSC identity. Subsequently, the enriched SSCs were labelled with a fluorescent dye PKH26 and transplanted into buffalo calves under ultrasound guidance. The recipient testes were recovered after 7-8 weeks by castration and their fluorescence microscopebased examination exhibited the persistence and localization of the fluorescent donor cells within the recipient seminiferous tubules. Further validation was done by the flow cytometric evaluation of PKH26 labeled donor cells among those isolated by two-step enzymatic digestion of recipient testicular parenchyma. In conclusion, we demonstrated the feasibility of SSC transplantation technique in the water buffalo.
Collapse
|
7
|
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo - An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151:95-102. [PMID: 32320839 DOI: 10.1016/j.theriogenology.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Large animals play important roles as model animals for biomedical sciences and translational research. The water buffalo (Bubalus bubalis) is an economically important, multipurpose livestock species. Important assisted reproduction techniques, such as in vitro fertilization, cryo-conservation of sperm and embryos, embryo transfer, somatic cell nuclear transfer, genetic engineering, and genome editing have been successfully applied to buffaloes. Recently, detailed whole genome data and transcriptome maps have been generated. In addition, rapid progress has been made in stem cell biology of the buffalo. Apart from embryonic stem cells, bubaline extra-embryonic stem cells have gained particular interest. The multipotency of non-embryonic stem cells has been revealed, and their utility in basic and applied research is currently investigated. In particular, success achieved in bubaline extra-embryonic stem cells may have important roles in experimental biology and therapeutic regenerative medicine. Progress in other farm animals in assisted reproduction techniques, stem cell biology and genetic engineering, which could be of importance for buffalo, will also be briefly summarized.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | | | - Prem S Yadav
- ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| |
Collapse
|
8
|
Sharma A, Shah SM, Tiwari M, Roshan M, Singh MK, Singla SK, Palta P, Manik RS, Chauhan MS. Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions. Cytotechnology 2020; 72:489-497. [PMID: 32124159 DOI: 10.1007/s10616-020-00386-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
In the present study, we used a serum-free culture media to propagate goat putative spermatogonial stem cells (SSCs) and evaluated the effect of crucial growth factors on relative expression of some SSC markers and self-renewal related genes. The enriched SSCs were cultured on a homologous Sertoli cell feeder layer in KO-DMEM supplemented with 10% KOSR. Putative SSC colonies emerged between day 6 and 10 which were then characterized by the expression of numerous spermatogonial and pluripotency related markers. After 15 days of subculture, the relative mRNA expression study revealed that 40 ng/mL concentration of Glial cell line-derived neurotrophic factor (GDNF) upregulated the expression of BCL6B, ID4, PLZF, and UCHL1. Moreover, the supplementation of GDNF + bFGF up-regulated the expression of PLZF and BCL6B. UCHL1 expression was higher after addition of GDNF + LIF while, THY1 overexpressed in response to the addition of GDNF + CSF1. These results demonstrated that the goat SSCs were efficiently propagated using a KOSR based serum-free media and the growth factor supplementation markedly influences their gene expression profile.
Collapse
Affiliation(s)
- Ankur Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.
| | - Syed Mohmad Shah
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manish Tiwari
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Mayank Roshan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Radhay Sham Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
9
|
Sharma A, Kumaresan A, Mehta P, Nala N, Singh MK, Palta P, Singla SK, Manik RS, Chauhan MS. Successful transplantation of transfected enriched buffalo (Bubalus bubalis) spermatogonial stem cells to homologous recipients. Theriogenology 2019; 142:441-449. [PMID: 31711692 DOI: 10.1016/j.theriogenology.2019.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023]
Abstract
Genetic modification of spermatogonial stem cells (SSCs) is an alternative method to pronuclear microinjection and somatic cell nuclear transfer for transgenesis in large animals. In the present study, we optimized the process of homologous SSC transplantation in the water buffalo (Bubalus bubalis) using transfected enriched SSCs generated by a non-viral transfection approach. Firstly, the SSC enrichment efficiencies of extracellular matrix components viz. collagen, gelatin, and Datura stramonium agglutinin (DSA) lectin were determined either individually or in combination with Percoll density gradient centrifugation. The highest enrichment was achieved after differential plating with DSA lectin followed by Percoll density gradient centrifugation. Nucleofection showed greater transfection efficiency (68.55 ± 4.56%, P < 0.05) for enriched SSCs in comparison to fugene HD (6.7 ± 0.25%) and lipofectamine 3000 (15.57 ± 0.74%). The transfected enriched SSCs were transplanted into buffalo males under the ultrasound guidance and testis was removed by castration after 7-8 weeks of transplantation. Persistence and localization of donor cells within recipient seminiferous tubules was confirmed using fluorescent microscopy. Further confirmation was done by flow cytometric evaluation of GFP expressing cells among those isolated from two-step enzymatic digestion of recipient testicular parenchyma. In conclusion, we demonstrated for the first time, generation of buffalo transfected enriched SSCs and their successful homologous transplantation in buffaloes. This study represents the first step towards genetic modifications in buffaloes using SSC transplantation technique.
Collapse
Affiliation(s)
- A Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - A Kumaresan
- Theriogenology Lab, Animal Reproduction, Gynecology & Obstetrics, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - P Mehta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - N Nala
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M K Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - P Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - S K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - R S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|