1
|
Yang C, Yang Y, Zhao B, Gao E, Chen H, Li Y, Ma J, Wang J, Hu S, Song X, Chen Y, Yang G, Huo S, Luo W. Comparative analysis of differentially expressed genes and transcripts in the ovary of yak in estrus and anestrus. Anim Biotechnol 2024; 35:2427757. [PMID: 39558653 DOI: 10.1080/10495398.2024.2427757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database. A total of 1149 DEGs and 2294 DETs were successfully identified. These DEGs and DETs were mainly related to biological processes such as "reproduction", "reproductive process", "metabolic process" and "rhythmic process". Kisspeptin-G protein-coupled receptor was found to be involved in regulating the reproductive cycle of yaks. DEGs and DETs were also related to gonadotropin-releasing hormone (GnRH) signaling pathways such as oocyte meiosis, estrogen signaling pathway, and progesterone-mediated induced oocyte maturation. The results showed that SIRT1, CSNK1A1, SLIT3, INHBA, INSL3, ZP2, Clock, BMP15, Bmal1, KISS1, and LCHGR regulate the postpartum quiescent state and the reproductive cycle of yaks. This study will help to further clarify the reproductive mechanism of yaks at the molecular level and provide certain assistance for the development of animal husbandry.
Collapse
Affiliation(s)
- Chongfa Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yahua Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Bingzhu Zhao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Enyu Gao
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Hao Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yang Li
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junyuan Ma
- Gannan Prefecture Animal Husbandry Technology Service Center, Gannan, Gansu, China
| | - Jine Wang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Songming Hu
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xiaochen Song
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Ying Chen
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Gengsacairang Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Shengdong Huo
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wenxue Luo
- Tianzhu County Animal Husbandry Technology Extension Station, Wuwei, Gansu, China
| |
Collapse
|
2
|
Liu Z, Chen Y, Huang M, Du Y, Xu G, Liu Z, Zhang M, Presicce GA, Xing X, Du F. Effects of hormone sources on developmental competence of oocytes by ovum pickup in Japanese black cattle. Anim Reprod Sci 2024; 267:107533. [PMID: 38879972 DOI: 10.1016/j.anireprosci.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Japanese Black (Wagyu) cattle donors were primed with different protocols and sources of follicle-stimulating hormone (FSH) for successive ovum pickup (OPU) and embryo development after in vitro fertilization (IVF). Following OPU, retrieved cumulus oocyte complexes (COCs) were subjected to IVF, and resulting blastocysts were transferred into recipients to evaluate implantation capability. Experiment 1: The best blastocyst development (45.3 %) and embryo yields (5.0/donor/OPU) were found with oocytes retrieved from donors treated with FSH (STIMUFOL®, Belgium) at a dosage of 150 IU per donor, compared to two others commercial FSH sources. Experiment 2: There were no differences in embryo development or yield with STIMUFOL FSH (total FSH 150 IU/donor) at a priming duration of either 60-h (Regime 1, six FSH injections) or 36-h (Regime 2, four FSH injections). Experiment 3: Compacted COCs required 22-26-h maturation in vitro (IVM) before IVF for optimal blastocyst development (36.1-41.1 %); however, short (18-h) and prolonged (30-h) IVM duration resulted in lower embryonic development. In contrast, expanded COCs resulted in inferior blastocyst development compared to compacted COCs. Immunofluorescence microscopy revealed that the ratio of 89.8 % cumulus compacted COCs were at the germinal vesicle (pachytene) phase while 98.9 % cumulus expanded COCs went through spontaneous meiosis from meiotic metaphase I, anaphase I, telophase I to metaphase II upon OPU retrieval (P<0.05). Pregnancy rates were not different among three FSH sources or different FSH treatments as long as embryos reached the blastocyst stage. Our study found that different sources of FSH used for Wagyu donor priming prior to OPU resulted in differential embryo development potentials, but those embryos that reached out to blastocysts had a competent implantation ability.
Collapse
Affiliation(s)
- Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengjia Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yinyan Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangyong Xu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | - Zhentian Liu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | - Meijie Zhang
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | | | - Xuesong Xing
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China.
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Pytel AT, Żyżyńska-Galeńska K, Gajewski Z, Papis K. Factors defining developmental competence of bovine oocytes collected for in vitro embryo production†. Biol Reprod 2024; 111:1-10. [PMID: 38662582 PMCID: PMC11525209 DOI: 10.1093/biolre/ioae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 07/16/2024] Open
Abstract
Despite the currently relatively low effectiveness of producing bovine embryos in vitro, there is a growing interest in applying this laboratory method in the field of reproduction. Many aspects of the procedure need to be improved. One of the main problems is the inferior developmental competence of in vitro matured oocytes that are collected using the ovum pick-up method. The mechanisms of oocyte capacitation and maturation, as well as the in vivo conditions in which they grow and mature, should be carefully analyzed. A deliberate application of the identified mechanisms and beneficial factors affecting the in vitro procedures seems to be essential for achieving higher developmental competence of the oocytes that are subjected to fertilization. The results may be improved by developing and employing a laboratory maturation protocol that corresponds with appropriate preparation of donors before the ovum pick-up, an optimized hormonal treatment program, the appropriate size of ovarian follicles at the time of aspiration, and a fine-tuned coasting period.
Collapse
Affiliation(s)
- Aleksandra Teresa Pytel
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Bovisvet Veterinary Practice of Reproduction and Cattle Diseases, Kosierady Wielkie 34A, 08-300 Sokołów Podlaski, Poland
| | - Krystyna Żyżyńska-Galeńska
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Zdzisław Gajewski
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Krzysztof Papis
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- nOvum Fertility Clinic, Bociania 13, 02-807 Warsaw, Poland
| |
Collapse
|
4
|
Du Y, Xia Y, Xu J, Liu Z, Liu Z, Zhang M, Xu G, Xing X, Du F. Effects of donor age and reproductive history on developmental potential of ovum pickup oocytes in Japanese Black cattle (Wagyu). Theriogenology 2024; 221:25-30. [PMID: 38537318 DOI: 10.1016/j.theriogenology.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
The objectives of this study were to analyze the (1) effects of donor age and multiparity on development of in vitro fertilization (IVF) embryos after ovum pickup (OPU), (2) effects of repeated and consecutive OPU-IVF procedures on embryo development, and (3) embryo production from OPU-IVF in donors with differing embryo yields after multiple ovulation and embryo transfer technology (MOET) in Japanese Black cattle (Wagyu). Donors were pre-treated with low-dosage follicle-stimulating hormone (FSH; 200 IU total), and oocytes were collected via OPU and fertilized by IVF to generate blastocysts. The number of oocytes collected per OPU session per donor was lower in heifers (2-4 years old, 5.3 oocytes) than in primiparous and pluriparous cows (2-10 years old, 13.6-19.1 oocytes; P < 0.05). Rates of blastocyst development for oocytes from heifers (33.1%) were lower than for those from cows (2-10 years old, 44.1-54.3%; P < 0.05), and average blastocyst yield/OPU/animal was lower in heifers (3.7) than in 5-6 years old cows (10.1; P < 0.05). Donors undergoing five consecutive OPU-IVF sessions after low-dosage FSH showed similar oocyte retrieval (12.2-15.1 oocytes per OPU/animal), blastocyst development rates (35.6-45.0%), and embryo yield/OPU/animal (4.8-5.8; P > 0.05) across sessions. Additionally, embryo yield from OPU-IVF was significantly improved in animals with previous low embryo yield from MOET (5.9 vs. 2.6, respectively, P < 0.05). These results indicate that Wagyu cows with previous births can be more productive as OPU-IVF donors than heifers, and oocytes from donors undergoing to five consecutive OPU-IVF cycles are competent for embryo development without loss of embryo yield/OPU/animal. Moreover, OPU-IVF can be used for embryo production and breeding from all elite Japanese Black cattle, regardless of previous low embryo yield in routine MOET.
Collapse
Affiliation(s)
- Yinyan Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yuhan Xia
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jiahui Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhentian Liu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong, 266400, PR China
| | - Meijie Zhang
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong, 266400, PR China
| | - Guangyong Xu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong, 266400, PR China
| | - Xuesong Xing
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong, 266400, PR China.
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Jiang Y, He Y, Pan X, Wang P, Yuan X, Ma B. Advances in Oocyte Maturation In Vivo and In Vitro in Mammals. Int J Mol Sci 2023; 24:9059. [PMID: 37240406 PMCID: PMC10219173 DOI: 10.3390/ijms24109059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The quality and maturation of an oocyte not only play decisive roles in fertilization and embryo success, but also have long-term impacts on the later growth and development of the fetus. Female fertility declines with age, reflecting a decline in oocyte quantity. However, the meiosis of oocytes involves a complex and orderly regulatory process whose mechanisms have not yet been fully elucidated. This review therefore mainly focuses on the regulation mechanism of oocyte maturation, including folliculogenesis, oogenesis, and the interactions between granulosa cells and oocytes, plus in vitro technology and nuclear/cytoplasm maturation in oocytes. Additionally, we have reviewed advances made in the single-cell mRNA sequencing technology related to oocyte maturation in order to improve our understanding of the mechanism of oocyte maturation and to provide a theoretical basis for subsequent research into oocyte maturation.
Collapse
Affiliation(s)
- Yao Jiang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Penghao Wang
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| |
Collapse
|
6
|
Biostimulation with the ram effect increases the follicle recruitment, ovulatory diameter, and embryo viability rate in superovulated ewes. Theriogenology 2022; 181:140-146. [DOI: 10.1016/j.theriogenology.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/19/2022]
|
7
|
Duarte-da-Fonseca Dias S, Palmeira-de-Oliveira A, Rolo J, Gomes-Ruivo P, Hélio Oliani A, Palmeira-de-Oliveira R, Martinez-de-Oliveira J, Pinto-de-Andrade L. Parameters influencing the maturation of bovine oocyte: a review. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Cantanhêde LF, Santos-Silva CT, Moura MT, Ferreira-Silva JC, Oliveira JMB, Gonçalves DNA, Teixeira ÁAC, Wanderley-Teixeira V, Oliveira MAL. Follicle-stimulating hormone mediates the consumption of serum-derived glycogen by bovine cumulus-oocyte complexes during in vitro maturation. Vet World 2021; 14:2512-2517. [PMID: 34840472 PMCID: PMC8613776 DOI: 10.14202/vetworld.2021.2512-2517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Oocyte in vitro maturation (IVM) is an appealing approach for several assisted reproductive technologies and dissecting oocyte maturation. Nonetheless, IVM leads to lower developmental competence and usually relies on undefined, serum-containing media. Therefore, biochemical profiling aimed to explore fluctuations in IVM media content during the acquisition of oocyte developmental competence. Materials and Methods: Bovine cumulus-oocyte complexes (COCs) underwent IVM in TCM199 medium with Earle’s salts, supplemented with 2.0 mM L-glutamine, 10% fetal bovine serum, antibiotics, and 0.05 IU/mL porcine follicle-stimulating hormone (FSH+) or vehicle control (CTL) medium for 22 h. Results: FSH withdrawal (CTL) diminished several processes associated with the acquisition of oocyte developmental competence, such as reduced cumulus cell expansion, diminished estradiol synthesis (FSH+: 116.0±0.0 pg/mL vs. CTL: 97.6±18.0 pg/mL), and lower oocyte nuclear maturation rate (FSH+: 96.47% vs. CTL: 88.76%). Fresh media formulations (i.e., TCM199 with FSH or vehicle) were indistinguishable under biochemical profiling threshold conditions. Biochemical profiling showed similar total protein and lipid concentrations between groups. Further, total sugar concentrations diminished from fresh media to their post-IVM counterparts, albeit in an FSH-independent manner. Glycogen concentrations remained unaltered after IVM within CTL media, albeit were substantially lower after IVM under FSH+ conditions. Conclusion: FSH mediates the consumption of serum-derived glycogen by bovine COCs during IVM and implies that serum-free media should contain increased glucose concentrations to facilitate the acquisition of oocyte developmental competence.
Collapse
Affiliation(s)
- Ludymila F Cantanhêde
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Cristiane T Santos-Silva
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Marcelo T Moura
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - José C Ferreira-Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Júnior M B Oliveira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Daniel N A Gonçalves
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Álvaro A C Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Valéria Wanderley-Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| | - Marcos A L Oliveira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco - UFRPE, Recife 52171900, Brazil
| |
Collapse
|
9
|
Gao D, Xu T, Qi X, Ning W, Ren S, Ru Z, Ji K, Ma Y, Yu T, Li Y, Cao Z, Zhang Y. CLAUDIN7 modulates trophectoderm barrier function to maintain blastocyst development in pigs. Theriogenology 2020; 158:346-357. [PMID: 33038820 DOI: 10.1016/j.theriogenology.2020.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Trophectoderm (TE) barrier function is an essential prerequisite for blastocyst development. CLAUDIN7 (CLDN7), a member of CLAUDINS family, is involved in regulating intercellular exchange and cell polarity in epithelium cells. However, the role of CLDN7 in porcine early embryo development is yet to be explored. Here, we found that CLDN7 was highly conserved in different species and was widely expressed in different tissues. Remarkably, CLDN7 expression maintained a low level from GV oocyte to 4-cell stage whereas its expression exhibited a higher level from 8-cell stage onwards. Microinjection of siRNA into cytoplasm effectively knocked down expression of CLDN7 mRNA and protein in porcine embryos. CLDN7 knockdown not only significantly reduced blastocyst rates of embryos derived from parthenogenetic activation and in vitro fertilization, but also reduced number of total cells and TE cells in the resulting blastocysts. Furthermore, CLDN7 knockdown led to a significant reduction in expression of multiple genes associated with tight junction assembly and fluid accumulation. A permeability assay revealed that CLDN7 knockdown disrupted tight junction assembly and paracellular sealing in the TE epithelium. Taken together, these results demonstrate that CLDN7 regulates porcine blastocyst development via modulating trophectoderm barrier function.
Collapse
Affiliation(s)
- Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shang Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenyuan Ru
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiyuan Ji
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Analysis of bovine blastocysts indicates ovarian stimulation does not induce chromosome errors, nor discordance between inner-cell mass and trophectoderm lineages. Theriogenology 2020; 161:108-119. [PMID: 33307428 PMCID: PMC7837012 DOI: 10.1016/j.theriogenology.2020.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
Contemporary systems for oocyte retrieval and culture of both cattle and human embryos are suboptimal with respect to pregnancy outcomes following transfer. In humans, chromosome abnormalities are the leading cause of early pregnancy loss in assisted reproduction. Consequently, pre-implantation genetic testing for aneuploidy (PGT-A) is widespread and there is considerable interest in its application to identify suitable cattle IVP embryos for transfer. Here we report on the nature and extent of chromosomal abnormalities following transvaginal follicular aspiration (OPU) and IVP in cattle. Nine sexually mature Holstein heifers underwent nine sequential cycles of OPU-IVP (six non-stimulated and three stimulated cycles), generating 459 blastocysts from 783 oocytes. We adopted a SNP-array approach normally employed in genomic evaluations but reanalysed (Turner et al., 2019; Theriogenology125: 249) to detect levels of meiotic aneuploidy. Specifically, we asked whether ovarian stimulation increased the level of aneuploidy in either trophectoderm (TE) or inner-cell mass (ICM) lineages of blastocysts generated from OPU-IVP cycles. The proportion of Day 8 blastocysts of inseminated was greater (P < 0.001) for stimulated than non-stimulated cycles (0.712 ± 0.0288 vs. 0.466 ± 0.0360), but the overall proportion aneuploidy was similar for both groups (0.241 ± 0.0231). Most abnormalities consisted of meiotic trisomies. Twenty in vivo derived blastocysts recovered from the same donors were all euploid, thus indicating that 24 h of maturation is primarily responsible for aneuploidy induction. Chromosomal errors in OPU-IVP blastocysts decreased (P < 0.001) proportionately as stage/grade improved (from 0.373 for expanded Grade 2 to 0.128 for hatching Grade 1 blastocysts). Importantly, there was a high degree of concordance in the incidence of aneuploidy between TE and ICM lineages. Proportionately, 0.94 were "perfectly concordant" (i.e. identical result in both); 0.01 were imperfectly concordant (differing abnormalities detected); 0.05 were discordant; of which 0.03 detected a potentially lethal TE abnormality (false positives), leaving only 0.02 false negatives. These data support the use of TE biopsies for PGT-A in embryos undergoing genomic evaluation in cattle breeding. Finally, we report chromosome-specific errors and a high degree of variability in the incidence of aneuploidy between donors, suggesting a genetic contribution that merits further investigation.
Collapse
|