1
|
Cheng B, Shi Y, Wu Q, Wang Y, Ma Y. Selenium Protects Follicular Granulosa Cells from Apoptosis Induced by Mercury Through Inhibition of ATF6/CHOP Pathway in Laying Hens. Biol Trace Elem Res 2023; 201:5368-5378. [PMID: 36746883 DOI: 10.1007/s12011-023-03589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
The purpose of this research was to explore the effect of selenium on mercury-mediated apoptosis of follicular granulosa cells in laying hens. Moreover, the ATF6/CHOP pathway was investigated to explore the mechanism in this progress. Hg, Se, and 4-phenyl butyric acid were used alone or in combination to treat the cells. Our results showed that the nuclear in cells became condensate after Hg exposure, while Se addition significantly alleviated this change. Hg exposure significantly induced the apoptosis and the reduction of mitochondrial membrane potential in cells (P < 0.05). Nevertheless, co-treatment of Se significantly inhibited these effects (P < 0.05). Additionally, Hg exposure dramatically elevated the gene expressions of Bax/Bcl-2 (P < 0.05), caspase-3 (P < 0.05), caspase-9 (P < 0.05), protein kinase RNA-like endoplasmic reticulum kinase (P < 0.05), activating transcription factor 6 (P < 0.05), C/EBP homologous protein (CHOP; P < 0.05), inositol-requiring enzyme 1α (P < 0.05), tumor necrosis factor-associated factor 2 (P < 0.05), activating transcription factor 6 (ATF6; P < 0.05), and apoptosis signal-regulating kinase 1 (P < 0.05) in cells, whereas Se addition avoided these changes. The exposure to Hg considerably boosted the expression of ATF6 and CHOP protein (P < 0.05), while Se addition significantly alleviated the above-mentioned enhancements (P < 0.05). In summary, Hg exposure induced apoptosis, which was considerably reduced alleviated by Se addition, which was linked to the ATF6/CHOP pathway in follicular granulosa cells in laying hens.
Collapse
Affiliation(s)
- Binyao Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yizhen Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Qiujue Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yan Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Dong J, Jiang X, Liu N, Li H, Zhao J, He J, Gao X. Identification and analysis of differentially expressed microRNAs in endometrium to explore the regulation of sheep fecundity. BMC Genomics 2023; 24:600. [PMID: 37814208 PMCID: PMC10563241 DOI: 10.1186/s12864-023-09681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important regulatory role in mammalian reproduction. Currently, most studies are primarily concentrated on ovarian miRNAs, ignoring the influence of endometrial miRNAs on the fecundity of female sheep. To uncover potential regulators of sheep fecundity, RNA-seq was used to comparatively analyze miRNA expression profiles of endometrium between high prolificacy sheep (HP, litter size = 3) and low prolificacy sheep (LP, litter size = 1) with FecB genotype. RESULTS Firstly, genomic features of miRNAs from endometrium were analyzed. Furthermore, 58 differentially expressed (DE) miRNAs were found in the endometrium of Hu sheep with different litter size. A co-expression network of DE miRNAs and target genes has been constructed, and hub genes related litter size are included, such as DE miRNA unconservative_NC_019472.2_1229533 and unconservative_NC_019481.2_1637827 target to estrogen receptor α (ESR1) and unconservative_NC_019481.2_1637827 targets to transcription factor 7 (TCF7). Moreover, functional annotation analysis showed that the target genes (NRCAM and NEGR1) of the DE miRNAs were significantly enriched in cell adhesion molecules (CAMs) signaling pathway, which was related to uterine receptivity. CONCLUSION Taken together, this study provides a new valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.
Collapse
Affiliation(s)
- Jihong Dong
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xuecheng Jiang
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| | - Xiaoxiao Gao
- College of Animal Science and Technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
3
|
Yakin K, Hela F, Oktem O. Progesterone signaling in the regulation of luteal steroidogenesis. Mol Hum Reprod 2023; 29:gaad022. [PMID: 37289566 PMCID: PMC10631818 DOI: 10.1093/molehr/gaad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
The corpus luteum is the major source of progesterone, the essential hormone for female reproductive function. While progesterone activity has been the subject of extensive research for decades, characterization of non-canonical progesterone receptor/signaling pathways provided a new perspective for understanding the complex signal transduction mechanisms exploited by the progesterone hormone. Deciphering these mechanisms has significant implications in the management of luteal phase disorders and early pregnancy complications. The purpose of this review is to highlight the complex mechanisms through which progesterone-induced signaling mediates luteal granulosa cell activity in the corpus luteum. Here, we review the literature and discuss the up-to-date evidence on how paracrine and autocrine effects of progesterone regulate luteal steroidogenic activity. We also review the limitations of the published data and highlight future research priorities.
Collapse
Affiliation(s)
- Kayhan Yakin
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| | - Francesko Hela
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- Harvard Medical School, Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Boston, MA, USA
| | - Ozgur Oktem
- Graduate School of Health Sciences, Koç University, Istanbul, Turkey
- School of Medicine, Department of Obstetrics and Gynecology, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Cai Y, Chen P, Xu H, Li S, Zhao B, Fan Y, Wang F, Zhang Y. EZH2 Gene Knockdown Inhibits Sheep Pituitary Cell Proliferation via Downregulating the AKT/ERK Signaling Pathway. Int J Mol Sci 2023; 24:10656. [PMID: 37445833 DOI: 10.3390/ijms241310656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary gonadotropins perform essential functions in mammalian reproduction by stimulating gametogenesis and steroidogenesis in the ovaries and testicles. EZH2 is a histone methyltransferase that inhibits proliferation and aggravates apoptosis in stem cells subjected to pathological stimuli. However, the expression and molecular mechanisms of EZH2 in pituitary cells in vitro have not been extensively studied. In this study, the relative abundances of EZH2 mRNA (p < 0.01) and protein (p < 0.05) expression were larger in the pituitary cells of Hu sheep with relatively greater fecundity (GF) compared to those with lesser fecundity (LF). Loss-of-function examinations demonstrated that EZH2 gene knockdown led to an earlier induction of apoptosis in sheep pituitary cells (PCs). The relative abundance of CASP3, CASP9, and BAX was increased (p < 0.01), while BCL2's abundance was less decreased (p < 0.01) in PCs where there was EZH2 gene knockdown. Additionally, cell proliferation (p < 0.01) and viability (p < 0.01) were decreased in EZH2-knockdown sheep PCs, and the cell cycle was blocked compared to a negative control (NC). Notably, EZH2 gene knockdown led to reduced abundances of gonadotropin subunit gene transcripts (FSHβ, p < 0.05) and reduced FSH release (p < 0.01) from PCs. EZH2 gene knockdown led to reduced phosphorylation of AKT, ERK, and mTOR (p < 0.01). The results suggest that EZH2 regulates pituitary cell proliferation, apoptosis, and FSH secretion through modulation of the AKT/ERK signaling pathway, providing a foundation for further study of pituitary cell functions.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyong Chen
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Xu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanglai Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Yang X, Jiang J, Wang Q, Duan J, Chen N, Wu D, Xia Y. Gender difference in hepatic AMPK pathway activated lipid metabolism induced by aged polystyrene microplastics exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114105. [PMID: 36155338 DOI: 10.1016/j.ecoenv.2022.114105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution becomes an increasing concern and researchers keep exploring the health effects caused by MPs exposure. The ageing process in the environment significantly alters the physicochemical characteristics of MPs and subsequently affects their toxicities. The health effects of aged MPs exposure and the mechanism underlying are worthy of exploration. Polystyrene microplastics (PS-MPs) (with size less than 50 µm) were obtained by grinding and screening polystyrene materials. PS-MPs continued to be aged by ozone treatment (0.4 mg/min, 9 h). Both male and female C57BL/6 mice were orally exposed to 0 or 2 mg/kg/d aged PS-MPs for 28 days. Results showed that PS-MPs were found in liver, ovary and spleen of females and liver, testis and spleen of males in the aged PS-MPs group. Exposure to aged PS-MPs significantly decreased abdominal fat/body coefficient, the adipocyte size and the serum LDL-C level in females. Compared to the control, serum estradiol (E2) level, the mRNA expression levels of genes regulating E2 production (17β-hsd, 3β-hsd and Star) in ovary and the protein expression levels of E2 receptors (ERα, ERβ), AMPKα and p-AMPKα1 in liver increased significantly, and the mRNA expression levels of AMP-activated protein kinase (AMPK) downstream genes (Srebp-1c, Fas and Scd1) in liver decreased significantly in the female aged PS-MPs group. Liver metabolomic profiling showed that differential metabolites between female aged PS-MPs group and female control group were enriched in biotin metabolism and the level of biotin increased significantly in the female aged PS-MPs group. However, no significant changes were detected in males. These results indicated that aged PS-MPs exposure increased ovarian E2 production and activated the AMPK pathway in the liver which might inhibit liver lipid synthesis only in females. Our findings provide new insights into the potential sex-specific health effects of environmental MPs pollution.
Collapse
Affiliation(s)
- Xiaona Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Ponomarenko MP, Chadaeva IV, Ponomarenko PM, Bogomolov AG, Oshchepkov DY, Sharypova EB, Suslov VV, Osadchuk AV, Osadchuk LV, Matushkin YG. A bioinformatic search for correspondence between differentially expressed genes of domestic versus wild animals and orthologous human genes altering reproductive potential. Vavilovskii Zhurnal Genet Selektsii 2022; 26:96-108. [PMID: 35342855 PMCID: PMC8894618 DOI: 10.18699/vjgb-22-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
One of the greatest achievements of genetics in the 20th century is D.K. Belyaev’s discovery of destabilizing selection during the domestication of animals and that this selection affects only gene expression regulation (not gene structure) and inf luences systems of neuroendocrine control of ontogenesis in a stressful environment. Among the experimental data generalized by Belyaev’s discovery, there are also f indings about accelerated extinc tion of testes’ hormonal function and disrupted seasonality of reproduction of domesticated foxes in comparison
with their wild congeners. To date, Belyaev’s discovery has already been repeatedly conf irmed, for example, by independent
observations during deer domestication, during the use of rats as laboratory animals, after the reintroduction
of endangered species such as Przewalski’s horse, and during the creation of a Siberian reserve population
of the Siberian grouse when it had reached an endangered status in natural habitats. A genome-wide comparison
among humans, several domestic animals, and some of their wild congeners has given rise to the concept of self-domestication
syndrome, which includes autism spectrum disorders. In our previous study, we created a bioinformatic
model of human self-domestication syndrome using differentially expressed genes (DEGs; of domestic animals
versus their wild congeners) orthologous to the human genes (mainly, nervous-system genes) whose changes in
expression affect reproductive potential, i. e., growth of the number of humans in the absence of restrictions caused
by limiting factors. Here, we applied this model to 68 human genes whose changes in expression alter the reproductive
health of women and men and to 3080 DEGs of domestic versus wild animals. As a result, in domestic animals,
we identif ied 16 and 4 DEGs, the expression changes of which are codirected with changes in the expression of the
human orthologous genes decreasing and increasing human reproductive potential, respectively. The wild animals
had 9 and 11 such DEGs, respectively. This difference between domestic and wild animals was signif icant according
to Pearson’s χ2 test (p < 0.05) and Fisher’s exact test (p < 0.05). We discuss the results from the standpoint of restoration
of endangered animal species whose natural habitats are subject to an anthropogenic impact.
Collapse
Affiliation(s)
- M. P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - P. M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - D. Yu. Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - V. V. Suslov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - L. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - Yu. G. Matushkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
7
|
Gao X, Li X, Wang Z, Li K, Liang Y, Yao X, Zhang G, Wang F. l-Argine regulates the proliferation, apoptosis and endocrine activity by alleviating oxidative stress in sheep endometrial epithelial cells. Theriogenology 2021; 179:187-196. [PMID: 34883396 DOI: 10.1016/j.theriogenology.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
l-arginine (L-Arg) is a semiessential amino acid that plays crucial roles in the reproductive performance of animals. This research aimed to investigate the effect of supplementing L-Arg on endometrial epithelial cells (EECs) of Hu sheep. In vivo, female Hu sheep were randomly divided into three groups: control group (n = 5), nutrient-restricted group (n = 5), and L-Arg supplemented nutrient-restricted group (n = 5). Then, the effect of L-Arg on ovine endometrial growth and antioxidant capacity was assessed. We found that L-Arg supplementation promoted the growth of endometrial ductal gland invaginations (DGI), and alleviated oxidative stress in nutrient-restricted sheep. In order to investigate its mechanism, a H2O2-induced EECs oxidative stress model was established, and roles of L-Arg in EECs oxidation resistance, proliferation, apoptosis and endocrine activity were studied in vitro. Our results showed that L-Arg markedly decreased the release of reactive oxygen species (ROS) and malonaldehyde (MDA), and enhanced the expression and activity of certain antioxidant enzymes in EECs challenged by the H2O2 (p < 0.05). Supplementation of L-Arg significantly reduced the effect of 200 μM H2O2 on the viability of EECs (p < 0.05). In addition, EECs treated with L-Arg significantly alleviated the G0/G1-phase cell cycle arrest, apoptosis, and the inhibition of endometrial growth factors expression caused by H2O2 (p < 0.05). Overall, the results demonstrate that L-Arg performs crucial roles in maintaining the proliferation of ovine EECs, endocrine activity and inhibiting apoptosis through reducing oxidative stress. This study offers a theoretical basis for using L-Arg to improve sheep the uterine function.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Yao X, Gao X, Bao Y, El-Samahy MA, Yang J, Wang Z, Li X, Zhang G, Zhang Y, Liu W, Wang F. lncRNA FDNCR promotes apoptosis of granulosa cells by targeting the miR-543-3p/DCN/TGF-β signaling pathway in Hu sheep. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:223-240. [PMID: 33767918 PMCID: PMC7973142 DOI: 10.1016/j.omtn.2021.02.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate the development of follicles and reproductive diseases, but the mechanisms by which lncRNAs regulate ovarian functions and fertility remain elusive. We profiled the expression of lncRNAs in ovarian tissues of Hu sheep with different prolificacy and identified 21,327 lncRNAs. Many of the lncRNAs were differentially expressed in different groups. We further characterized an lncRNA that was predominantly expressed in the ovaries of the low prolificacy FecB+ (LPB+) group and mainly present in granulosa cells (GCs), and the expression of this lncRNA decreased during follicular development, which we named follicular development-associated lncRNA (FDNCR). Next, we found that FDNCR directly binds miR-543-3p, and decorin (DCN) was identified as a target of miR-543-3p. FDNCR overexpression promoted GC apoptosis through increased expression of DCN, which could be attenuated by miR-543-3p. Furthermore, miR-543-3p increased and FDNCR reduced the expression of transforming growth factor-β (TGF-β) pathway-related genes, including TGF-β1 and inhibin beta A (INHBA), which were upregulated upon DCN silencing. Our results demonstrated that FDNCR sponges miR-543-3p in GCs and prevents miR-543-3p from binding to the DCN 3′ UTR, resulting in DCN transactivation and TGF-β pathway inhibition and promotion of GC apoptosis in Hu sheep. These findings provide insights into the mechanisms underlying prolificacy in sheep.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - XiaoXiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - M A El-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinyu Yang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.,Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|