1
|
Peng J, Cui Y, Liang H, Xu S, Weng L, Ru M, Ali R, Wei Q, Ruan J, Huang J. Integrated transcriptomic hypothalamic-pituitary-ovarian axis network analysis reveals the role of energy availability on egg production in layers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:66-79. [PMID: 39949733 PMCID: PMC11821414 DOI: 10.1016/j.aninu.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 02/16/2025]
Abstract
Energy is a crucial component for maintaining egg production in layers. The hypothalamic-pituitary-ovarian (HPO) axis is an energy-sensitive functional axis for follicle development, synthesis, and secretion of reproductive hormones, and plays a key role in modulating sustained ovulation in layers. To investigate the mechanism of integrated network regulation of the HPO axis under energy fluctuation, ninety Hy-line brown layers (265-day-old, 1.92 ± 0.02 kg) were randomly divided into three groups for a 17-day experiment: a control group (Con group) fed ad libitum from days 1 to 17, an energy-deprived group (ED group) that was fed ad libitum from days 1 to 12 and then underwent a fasting period from days 13 to 17 to induce a pause in laying, and a re-fed group (Rf group) that fasted for seven days (specifically, days 1 to 5, day 7, and day 9), had ad libitum access to feed on days 6 and 8, and was continuously fed from days 10 to 17. Each treatment consisted of 10 replicates with 3 birds per replicate. The study found that energy deprivation significantly decreased reproductive performance such as egg laying rate, ovarian index, number of small yellow follicles (SYF), and normal hierarchical follicles (NHIE) (P < 0.05), which recovered after refeeding, indicating the importance of energy availability for sustained ovulation in layers. In addition, estradiol (E2), estradiol to progesterone (E2/P4) ratio, and luteinizing hormone (LH) displayed changes similar to follicle number, whereas follicle-stimulating hormone (FSH) exhibited a contrasting pattern. Transcriptome analysis revealed that energy deprivation downregulated genes related to energy and appetite-regulated neurotransmitter receptors and neuropeptides in the hypothalamus. These signals combined to inhibit gonadotropin-releasing hormone (GnRH) secretion and subsequently downregulated the crucial genes responsible for synthesizing gonadotropins, gonadotropin-releasing hormone receptor (GnRHR), and glycoprotein hormones alpha chain (CGA). Consequently, this suppression of the hypothalamus and pituitary affected ovarian function through ovarian steroidogenesis and the extracellular matrix (ECM)-receptor interaction. These findings suggest that energy deprivation inhibits the function of the HPO axis, leading to impaired follicle development and reduced egg production, and that refeeding can partially restore these indicators.
Collapse
Affiliation(s)
- Jianling Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Cui
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiping Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shenyijun Xu
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Linjian Weng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Ru
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ramlat Ali
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Du Y, Cao C, Liu Y, Zi X, He Y, Shi H, Zhao J, Ge C, Wang K. Polymorphism, Genetic Effect, and Association with Egg-Laying Performance of Chahua Chickens Matrix Metalloproteinases 13 Promoter. Genes (Basel) 2023; 14:1352. [PMID: 37510257 PMCID: PMC10379211 DOI: 10.3390/genes14071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases are a group of proteases involved in the regulation of ovarian follicular development and ovulation. Among the different MMPs, MMP13 is known to play an important role in reproduction. Therefore, this study aimed to screen the molecular genetic markers of the MMP13 gene that affect the egg-laying performance of Chahua chickens. Polymerase chain reaction (PCR) and sequencing were performed in the 5' regulation region of the MMP13 gene to detect loci significantly related to the egg-laying performance of Chahua chickens. A double fluorescence reporting system, quantitative reverse transcription PCR (RT-qPCR), and Western blotting were used to study whether gene expression was regulated by identified sites, providing a theoretical basis to improve egg production in Chahua chickens. The results revealed six single nucleotide polymorphisms (SNPs; A-1887T, T-1889C, A-1890T, T-2252C, T-2329C, and C-2360A) in the promoter region of the MMP13 gene. Further analysis revealed that hens with T-1890-C-1889-T-1887/T-1890-C-1889-T-1887 (mutant type, MT) had an earlier age at first egg (AFE) than hens with A-1890-T-1889-A-1887/A-1890-T-1889-A-1887 (wild type, WT; p < 0.05). RT-qPCR showed that the relative expression level of the MMP13 gene in the ovarian tissues of individuals with the mutation was higher than that of individuals with the wild gene (p < 0.05). Western blot results confirmed higher levels of the MMP13 protein in MT ovaries compared to those in WT ovaries. Thus, this study suggests that mutation sites on the MMP13 promoter may affect gene expression. In conclusion, the MMP13 gene in Chahua chickens may be significant for egg-laying performance, and the polymorphism in its promoter region could be used as a molecular marker to improve egg-laying performance.
Collapse
Affiliation(s)
- Yanli Du
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences, Kunming University, Kunming 650200, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Biological Sciences, Southwest Forestry University, Kunming 650201, China
| | - Yong Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Xiannian Zi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Yang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Shi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Jinbo Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Changrong Ge
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Wolak D, Hrabia A. Ovarian mRNA Expression and Regulation of Matrix Metalloproteinase 16 in the Domestic Hen. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mammals, membrane-bound matrix metalloproteinases (MT-MMPs) are thought to play an important role in ovarian remodeling. However, the role and regulation of these proteases in the ovary of birds remain largely unknown. One of MT-MMPs, i. e., MMP-16, has been found in the hen ovary;
therefore, this study was undertaken to examine whether the transcript level of MMP-16 changes during follicle development and whether gonadotropins and estrogen are involved in the regulation of this enzyme expression. The relative expression of MMP-16 mRNA in the ovarian follicles (white,
yellowish, small yellow, and the granulosa and theca layers of three of the largest yellow preovulatory [F3-F1]) was examined 22 h and 3 h before F1 follicle ovulation as well as following equine chorionic gonadotropin (eCG) or tamoxifen (estrogen receptor modulator, TMX) treatments by quantitative
real-time polymerase chain reaction (qRT-PCR). MMP-16 transcripts were detected in all examined ovarian tissues of control and treated hens. The relative expression of MMP-16 depended on follicular size/maturation and the layer of the follicular wall. A relatively higher expression of MMP-16
mRNA in the granulosa layer at 3 h compared to 22 h before ovulation of F1 was found. The injections of eCG decreased transcript abundance of MMP-16 in white and small yellow follicles, as well as in the theca layer of F3-F2 and the granulosa layer of the F1 follicle. In turn, TMX caused an
increase in mRNA expression of MMP-16 in the theca layer of the largest preovulatory follicles and a decrease in the granulosa layer of the F1 follicle. Our results provide the first mRNA expression analysis of MMP-16 in the hen ovary under different physiological states. In addition, results
indicate a possible role of gonadotropins and estrogen in regulating the transcription of MMP-16 in the chicken ovary.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
4
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Han S, Wang J, Cui C, Yu C, Zhang Y, Li D, Ma M, Du H, Jiang X, Zhu Q, Yang C, Yin H. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken. Poult Sci 2021; 101:101524. [PMID: 34784514 PMCID: PMC8591502 DOI: 10.1016/j.psj.2021.101524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Matrix Metalloproteinases (MMPs) and Inhibitors of MMPs in the Avian Reproductive System: An Overview. Int J Mol Sci 2021; 22:ijms22158056. [PMID: 34360823 PMCID: PMC8348296 DOI: 10.3390/ijms22158056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Many matrix metalloproteinases (MMPs) are produced in the mammalian reproductive system and participate in the regulation of its functions. In birds, the limited information available thus far indicates that MMPs are significant regulators of avian ovarian and oviductal functions, too. Some MMPs and inhibitors of MMPs are present in the hen reproductive tissues and their abundances and/or activities change according to the physiological state. The intraovarian role of MMPs likely includes the remodeling of the extracellular matrix (ECM) during folliculogenesis, follicle atresia, and postovulatory regression. In the oviduct, MMPs are also involved in ECM turnover during oviduct development and regression. This study provides a review of the current knowledge on the presence, activity, and regulation of MMPs in the female reproductive system of birds.
Collapse
|
7
|
Hrabia A, Wolak D, Sechman A. Response of the matrix metalloproteinase system of the chicken ovary to prolactin treatment. Theriogenology 2021; 169:21-28. [PMID: 33915314 DOI: 10.1016/j.theriogenology.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of several matrix metalloproteinases (MMPs) has been demonstrated in the chicken ovary during various physiological states; these data indicate that MMPs are involved in the remodeling of the extracellular matrix (ECM) during follicle development, ovulation, atresia, and regression. The regulation of MMPs in the avian ovary, however, remains largely unknown. The present study aimed to examine the effect of recombinant chicken prolactin (chPRL) treatment on the expression of selected MMPs and their tissue inhibitors (TIMPs), as well as MMP-2 and MMP-9 activity in the hen ovary. Real-time polymerase chain reaction revealed changes in the mRNA expression of MMP-2, MMP-7, MMP-9, MMP-10, MMP-13, TIMP-2, and TIMP-3 in the following ovarian follicles: white, yellowish, small yellow, and the largest yellow preovulatory (F3-F1). Western blot analysis showed alterations in the abundance of latent and active forms of the MMP-2 protein, as well as the abundance of the MMP-9 protein. Moreover, minor changes in MMP-2 and MMP-9 total activities were found in ovarian follicles of chPRL-treated hens. The response to chPRL treatment depended upon the stage of follicle development, the layer of follicular wall, and the type of MMPs or TIMPs studied. In general, the results indicate that chPRL, is a positive regulator of MMP expression in the yellow preovulatory follicles. Our findings suggest that PRL participates in the mechanisms orchestrating ECM turnover during ovarian follicular development in the hen ovary via regulating the transcription, translation, and/or activity of some constituents of the MMP system.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland.
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|