1
|
Hai E, Li B, Song Y, Zhang J, Zhang J. Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation. J Anim Sci Biotechnol 2025; 16:26. [PMID: 39966967 PMCID: PMC11834235 DOI: 10.1186/s40104-025-01158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Freezing-induced sperm damage, often associated with oxidative stress, can result in regulated cell death. Given that oxidative stress can trigger various forms of regulated cell death, the prevailing form during sperm cryopreservation remains unknown. Our study aimed to investigate this issue using cashmere goats as a model. RESULTS We found a significant increase in lyso-phospholipids in frozen-thawed sperm suggested ferroptosis. Assessment of cryopreserved sperm, with or without prior treatment with ferroptosis or apoptosis inhibitors, demonstrated the significant efficacy of ferroptosis inhibitors in reducing freezing damage. This implicates ferroptosis as the primary form of regulated cell death induced during sperm cryopreservation. Additionally, the positive rate of transferrin receptor protein 1 was significantly lower in fresh live sperm (47.8%) than in thawed live sperm (71.5%), and the latter rate was lower than that in dead sperm (82.5%). By contrast, cleaved caspase-3 positivity showed no significant difference between fresh live sperm and thawed live sperm but was notably lower in thawed live sperm than in dead sperm. CONCLUSIONS Our findings establish ferroptosis as the dominant regulated cell death form during goat sperm cryopreservation, providing novel insights into freezing-induced sperm damage mechanisms. These findings have significant implications for optimizing cryopreservation protocols and enhancing sperm viability after freezing-thawing.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
2
|
Cai J, Song L, Hu Z, Gao X, Wang Y, Chen Y, Xi K, Lu X, Shi Y. Astragalin alleviates oligoasthenospermia via promoting nuclear translocation of Nrf2 and reducing ferroptosis of testis. Heliyon 2024; 10:e38778. [PMID: 39444397 PMCID: PMC11497445 DOI: 10.1016/j.heliyon.2024.e38778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Oligoasthenospermia (OAS) is a global human developmental disease and the most common type of male infertility. There are currently no sufficiently effective therapeutic strategies for OAS. Wuziyanzong Pill (WZYZP) is a traditional Chinese prescription for the clinical treatment of male infertility, and its efficacy is well known in China. Therefore, due to the complexity of traditional Chinese medicine, the specific mechanism of action of WZYZP on OAS has not been elucidated. Astragalin (AG), one of the main active substances in WZYZP, has good antioxidant effect. The aim of this research is to investigate whether AG, the active substance in WZYZP, can treat OAS by promoting Nrf2 nuclear translocation and inhibiting ferroptosis. The OAS model was established by intraperitoneal injection of cyclophosphamide, and the therapeutic effects of AG and WZYZP on OAS were evaluated by detecting sperm quality, sex hormone levels and testicular pathological changes after intragastric administration of AG and WZYZP. Western blot was used to measure the expression levels of TFR1, SLC7A11, GPX4 and FTH1. The nuclear translocation of Nrf2 was detected by immunofluorescence staining and nuclear/intracellular expression of Nrf2. The results showed that AG could improve sperm quality and serum sex hormone levels in OAS rats, reduce the expression of testicular Fe2+ and TFR1, up-regulate testicular SLC7A11, GPX4 and FTH1, and inhibit testicular ferroptosis. At the same time, AG can promote the expression and nuclear translocation of Nrf2 in the testis of OAS rats. AG can alleviate OAS via promoting nuclear translocation of Nrf2 and inhibiting ferroptosis of testis.
Collapse
Affiliation(s)
- Jiayu Cai
- Traditional Chinese Medicine Department, Jinling Hospital, Nanjing 210002,China
| | - Lingxiong Song
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Zebo Hu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xiaojiao Gao
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yuhan Wang
- School of Public Health and Management, Ningxia Medicine University, Ningxia, China
| | - Yang Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Ke Xi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Xin Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| | - Yonghui Shi
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Bucci D, Spinaci M, Bustamante-Filho IC, Nesci S. The sperm mitochondria: clues and challenges. Anim Reprod 2023; 19:e20220131. [PMID: 36819482 PMCID: PMC9924773 DOI: 10.1590/1984-3143-ar2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sperm cells rely on different substrates to fulfil thei energy demand for different functions and diverse moments of their life. Species specific mechanism involve both energy substrate transport and their utilization: hexose transporters, a protein family of facilitative passive transporters of glucose and other hexose, have been identified in spermatozoa of different species and, within the species, their localization has been identified and, in some cases, linked to specific glycilitic enzyme presence. The catabolism of hexose sources for energy purposes has been studied in various species, and recent advances has been made in the knowledge of metabolic strategies of sperm cells. In particular, the importance of aerobic metabolism has been defined and described in horse, boar and even mouse spermatozoa; bull sperm cells demonstrate to have a good adaptability and capacity to switch between glycolysis and oxidative phosphorylation; finally, dog sperm cells have been demonstrated to have a great plasticity in energy metabolism management, being also able to activate the anabolic pathway of glycogen syntesis. In conclusion, the study of energy management and mitochondrial function in spermatozoa of different specie furnishes important base knowledge to define new media for preservation as well as newbases for reproductive biotechnologies.
Collapse
Affiliation(s)
- Diego Bucci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy,Corresponding author:
| | - Marcella Spinaci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Salvatore Nesci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Su Y, Liu Z, Xie K, Ren Y, Li C, Chen W. Ferroptosis: A Novel Type of Cell Death in Male Reproduction. Genes (Basel) 2022; 14:genes14010043. [PMID: 36672785 PMCID: PMC9858973 DOI: 10.3390/genes14010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Ferroptosis, an iron-dependent type of regulated cell death, is triggered by the accumulation of lethal lipid peroxides. Due to its potential in exploring disease progression and highly targeted therapies, it is still a widely discussed topic nowadays. In recent studies, it was found that ferroptosis was induced when testicular tissue was exposed to some high-risk factors, such as cadmium (Cd), busulfan, and smoking accompanied by a variety of reproductive damage characteristics, including changes in the specific morphology and ferroptosis-related features. In this literature-based review, we summarize the related mechanisms of ferroptosis and elaborate upon its relationship network in the male reproductive system in terms of three significant events: the abnormal iron metabolism, dysregulation of the Cyst(e)ine/GSH/GPX4 axis, and lipid peroxidation. It is meaningful to deeply explore the relationship between ferroptosis and the male reproductive system, which may provide suggestions regarding pristine therapeutic targets and novel drugs.
Collapse
Affiliation(s)
- Yanjing Su
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Zelan Liu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Keyu Xie
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yingxin Ren
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Chunyun Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Clinical Medicine, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Department of Nursing, Hunan Normal University School of Medicine, Changsha 410013, China
- Correspondence: (C.L.); (W.C.)
| |
Collapse
|
5
|
Assessment of an open-access CASA software for bovine and buffalo sperm motility analysis. Anim Reprod Sci 2022; 247:107089. [DOI: 10.1016/j.anireprosci.2022.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022]
|
6
|
Peña FJ, Gibb Z. OXIDATIVE STRESS AND REPRODUCTIVE FUNCTION: Oxidative stress and the long-term storage of horse spermatozoa. Reproduction 2022; 164:F135-F144. [PMID: 36255038 DOI: 10.1530/rep-22-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
In brief The growing understanding of the mechanisms regulating redox homeostasis in the stallion spermatozoa, together with its interactions with energetic metabolism, is providing new clues applicable to the improvement of sperm conservation in horses. Based on this knowledge, new extenders, adapted to the biology of the stallion spermatozoa, are expected to be developed in the near future. Abstract The preservation of semen either by refrigeration or cryopreservation is a principal component of most animal breeding industries. Although this procedure has been successful in many species, in others, substantial limitations persist. In the last decade, mechanistic studies have shed light on the molecular changes behind the damage that spermatozoa experience during preservation. Most of this damage is oxidative, and thus in this review, we aim to provide an updated overview of recent discoveries about how stallion spermatozoa maintain redox homeostasis, and how the current procedures of sperm preservation disrupt redox regulation and cause sperm damage which affects viability, functionality, fertility and potentially the health of the offspring. We are optimistic that this review will promote new ideas for further research to improve sperm preservation technologies, promoting translational research with a wide scope for applicability not only in horses but also in other animal species and humans.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
7
|
Spinaci M, Nerozzi C, Mislei B, Blanco-Prieto O, Mari G, Galeati G, Bucci D. Impact of glyphosate and its formulation Roundup® on stallion spermatozoa. Theriogenology 2022; 179:197-203. [PMID: 34891125 DOI: 10.1016/j.theriogenology.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
The growing and widespread use of glyphosate-based herbicides (GBHs) has raised an intense public debate about the impact of environmental contamination on animal and human health, including male fertility. The aim of this study was to deepen the impact of glyphosate (Gly) and GBHs on mammalian sperm investigating the effect of in vitro exposure of stallion spermatozoa to Gly and to its commercial formulation Roundup® (R). Spermatozoa were incubated at 37 °C with different Gly or R concentrations (from 0.5 to 720 μg/mL Gly or R at the same Gly-equivalent concentrations). After 1 h of incubation motility, viability, acrosome integrity, mitochondrial activity and ROS production were assessed. Gly, at all the concentrations tested, did not induce any detrimental impact on the sperm quality parameters evaluated. Conversely, R starting from 360 μg/mL (Gly-equivalent dose) significantly (P < 0.05) decreased total and progressive motility, viability, acrosome integrity, mitochondrial activity and the percentage of live spermatozoa with intact mitochondria not producing ROS. Our results indicate that the commercial formulation R is more toxic than its active molecule Gly and that the negative impact on stallion sperm motility might be likely due to a detrimental effect mainly at membrane and mitochondrial level and, at least in part, to redox unbalance. Moreover, based on the data obtained, it can be hypothesized a species-specificity in sperm sensitivity to Gly and GBHs as horse spermatozoa were negatively influenced at higher concentrations of R compared to those reported in literature to be toxic for human and swine male germ cells.
Collapse
Affiliation(s)
- Marcella Spinaci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.
| | - Chiara Nerozzi
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Beatrice Mislei
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; National Institute of Artificial Insemination (AUB-INFA), University of Bologna, Bologna, Italy
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Gaetano Mari
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; National Institute of Artificial Insemination (AUB-INFA), University of Bologna, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Wang Y, Liu T, Li X, Sheng H, Ma X, Hao L. Ferroptosis-Inducing Nanomedicine for Cancer Therapy. Front Pharmacol 2021; 12:735965. [PMID: 34987385 PMCID: PMC8722674 DOI: 10.3389/fphar.2021.735965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Ferroptosis, a new iron- and reactive oxygen species-dependent form of regulated cell death, has attracted much attention in the therapy of various types of tumors. With the development of nanomaterials, more and more evidence shows the potential of ferroptosis combined with nanomaterials for cancer therapy. Recently, there has been much effort to develop ferroptosis-inducing nanomedicine, specially combined with the conventional or emerging therapy. Therefore, it is necessary to outline the previous work on ferroptosis-inducing nanomedicine and clarify directions for improvement and application to cancer therapy in the future. In this review, we will comprehensively focus on the strategies of cancer therapy based on ferroptosis-inducing nanomedicine currently, elaborate on the design ideas of synthesis, analyze the advantages and limitations, and finally look forward to the future perspective on the emerging field.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
| | - Tianfu Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- China Medical University-The Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Hui Sheng
- Physical College, Liaoning University, Shenyang, China
| | - Xiaowen Ma
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Center of Forensic Investigation, Shenyang, China
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|