1
|
Helal M, Sameh J, Gharib S, Merghany RM, Bozhilova-Sakova M, Ragab M. Candidate genes associated with reproductive traits in rabbits. Trop Anim Health Prod 2024; 56:94. [PMID: 38441694 PMCID: PMC10914644 DOI: 10.1007/s11250-024-03938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
In the era of scientific advances and genetic progress, opportunities in the livestock sector are constantly growing. The application of molecular-based methods and approaches in farm animal breeding would accelerate and improve the expected results. The current work aims to comprehensively review the most important causative mutations in candidate genes that affect prolificacy traits in rabbits. Rabbits are a source of excellent-tasting meat that is high in protein and low in fat. Their early maturity and intensive growth are highly valued all over the world. However, improving reproductive traits and prolificacy in rabbits could be very tricky with traditional selection. Therefore, traditional breeding programs need new methods based on contemporary discoveries in molecular biology and genetics because of the complexity of the selection process. The study and implementation of genetic markers related to production in rabbits will help to create populations with specific productive traits that will produce the desired results in an extremely short time. Many studies worldwide showed an association between different genes and productive traits in rabbits. The study of these polymorphisms and their effects could be useful for molecular-oriented breeding, particularly marker-assisted selection programs in rabbit breeding.
Collapse
Affiliation(s)
- Mostafa Helal
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Jana Sameh
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Sama Gharib
- Biotechnology Program, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Rana M Merghany
- Department of Pharmacognosy, National Research Centre, Giza, 12622, Egypt
| | | | - Mohamed Ragab
- Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
- Animal Breeding and Genetics Department, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, 28040, Spain
| |
Collapse
|
2
|
Zhang L, Zhang S, Yuan M, Zhan F, Song M, Shang P, Yang F, Li X, Qiao R, Han X, Li X, Fang M, Wang K. Genome-Wide Association Studies and Runs of Homozygosity to Identify Reproduction-Related Genes in Yorkshire Pig Population. Genes (Basel) 2023; 14:2133. [PMID: 38136955 PMCID: PMC10742578 DOI: 10.3390/genes14122133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Reproductive traits hold considerable economic importance in pig breeding and production. However, candidate genes underpinning the reproductive traits are still poorly identified. In the present study, we executed a genome-wide association study (GWAS) and runs of homozygosity (ROH) analysis using the PorcineSNP50 BeadChip array for 585 Yorkshire pigs. Results from the GWAS identified two genome-wide significant and eighteen suggestive significant single nucleotide polymorphisms (SNPs) associated with seven reproductive traits. Furthermore, we identified candidate genes, including ELMO1, AOAH, INSIG2, NUP205, LYPLAL1, RPL34, LIPH, RNF7, GRK7, ETV5, FYN, and SLC30A5, which were chosen due to adjoining significant SNPs and their functions in immunity, fertilization, embryonic development, and sperm quality. Several genes were found in ROH islands associated with spermatozoa, development of the fetus, mature eggs, and litter size, including INSL6, TAF4B, E2F7, RTL1, CDKN1C, and GDF9. This study will provide insight into the genetic basis for pig reproductive traits, facilitating reproduction improvement using the marker-based selection methods.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Meng Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China;
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (S.Z.); (M.Y.); (F.Z.); (M.S.); (F.Y.); (X.L.); (R.Q.); (X.H.); (X.L.)
| |
Collapse
|
3
|
Zhou C, Cheng X, Meng F, Wang Y, Luo W, Zheng E, Cai G, Wu Z, Li Z, Hong L. Identification and characterization of circRNAs in peri-implantation endometrium between Yorkshire and Erhualian pigs. BMC Genomics 2023; 24:412. [PMID: 37488487 PMCID: PMC10364396 DOI: 10.1186/s12864-023-09414-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.
Collapse
Affiliation(s)
- Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyan Cheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
| | - Yongzhong Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyun Luo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| |
Collapse
|
4
|
Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, Bhushan B, Gaur GK. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep 2023; 50:3705-3721. [PMID: 36642776 DOI: 10.1007/s11033-022-08168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/01/2022] [Indexed: 01/17/2023]
Abstract
Litter size is a complex and sex limited trait that depends on various biological, managemental and environmental factors. Owing to its low heritability it is inefficaciously selected by traditional methods. However, due to higher heritability of ovulation rate and embryo survival, selection based on component traits of litter size is advocated. QTL analysis and candidate gene approach are among the various supplementary/alternate strategies for selection of litter size. QTL analysis is aimed at identifying genomic regions affecting trait of interest significantly. Candidate gene approach necessitates identification of genes potentially affecting the trait. There are various genes that significantly affect litter size and its component traits viz. ESR, LEP, BF, IGFBP, RBP4, PRLR, CTNNAL1, WNT10B, TCF12, DAZ, and RNF4. These genes affect litter size in a complex interacting manner. Lately, genome wide association study (GWAS) have been utilized to unveil the genetic and biological background of litter traits, and elucidate the genes governing litter size. Favorable SNPs in these genes have been identified and offers a scope for inclusion in selection programs thereby increasing breeding efficiency and profit in pigs. The review provides a comprehensive coverage of investigations carried out globally to unravel the genetic variation in litter size and its component traits in pigs, both at allelic and genome wide level. It offers a current perspective on different strategies including the profiling of candidate genes, QTLs, and genome wide association studies as an aid to efficient selection for litter size and its component traits.
Collapse
Affiliation(s)
| | - Anuj Chauhan
- Indian Veterinary Research Institute, Bareilly, India.
| | - Argana Ajay
- Indian Veterinary Research Institute, Bareilly, India
| | | | - Subodh Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Indian Veterinary Research Institute, Bareilly, India
| | | | | |
Collapse
|
5
|
Liu T, Nielsen B, Christensen OF, Lund MS, Su G. The impact of genotyping strategies and statistical models on accuracy of genomic prediction for survival in pigs. J Anim Sci Biotechnol 2023; 14:1. [PMID: 36593522 PMCID: PMC9809124 DOI: 10.1186/s40104-022-00800-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Survival from birth to slaughter is an important economic trait in commercial pig productions. Increasing survival can improve both economic efficiency and animal welfare. The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter. RESULTS: We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model, a logit model, and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes (0, 1). The results show that in the case of only alive animals having genotype data, unbiased genomic predictions can be achieved when using variances estimated from pedigree-based model. Models using genomic information achieved up to 59.2% higher accuracy of estimated breeding value compared to pedigree-based model, dependent on genotyping scenarios. The scenario of genotyping all individuals, both dead and alive individuals, obtained the highest accuracy. When an equal number of individuals (80%) were genotyped, random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes. The linear model, logit model and probit model achieved similar accuracy. CONCLUSIONS Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes, but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06% to 6.04%.
Collapse
Affiliation(s)
- Tianfei Liu
- grid.135769.f0000 0001 0561 6611Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China ,grid.7048.b0000 0001 1956 2722Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Bjarne Nielsen
- grid.7048.b0000 0001 1956 2722Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark ,grid.426594.80000 0004 4688 8316Pig Research Centre, SEGES, 1609 Copenhagen, Denmark
| | - Ole F. Christensen
- grid.7048.b0000 0001 1956 2722Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Mogens Sandø Lund
- grid.7048.b0000 0001 1956 2722Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Guosheng Su
- grid.7048.b0000 0001 1956 2722Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
6
|
Wang X, Wang L, Shi L, Zhang P, Li Y, Li M, Tian J, Wang L, Zhao F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int J Mol Sci 2022; 23:13338. [PMID: 36362120 PMCID: PMC9656588 DOI: 10.3390/ijms232113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/09/2023] Open
Abstract
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Chen Z, Zhang Z, Wang Z, Zhang Z, Wang Q, Pan Y. Heterozygosity and homozygosity regions affect reproductive success and the loss of reproduction: a case study with litter traits in pigs. Comput Struct Biotechnol J 2022; 20:4060-4071. [PMID: 35983229 PMCID: PMC9364102 DOI: 10.1016/j.csbj.2022.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Runs of heterozygosity (ROHet) and homozygosity (ROH) harbor useful information related to traits of interest. There is a lack of investigating the effect of ROHet and ROH on reproductive success and the loss of reproduction in mammals. Here, we detected and characterized the ROHet and ROH patterns in the genomes of Chinese indigenous pigs (i.e., Jinhua, Chun’an, Longyou Black, and Shengxian Spotted pigs), revealing the similar genetic characteristics of indigenous pigs. Later, we highlighted the underlying litter traits-related ROHet and ROH using association analysis with linear model in these four indigenous pig breeds. To pinpoint the promising candidate genes associated with litter traits, we further in-depth explore the selection patterns of other five pig breeds (i.e., Erhualian, Meishan, Minzhu, Rongchang, and Diqing pigs) with different levels of reproduction performance at the underlying litter traits-related ROHet and ROH using FST and genetic diversity ratio. Then, we identified a set of known and novel candidate genes associated with reproductive performance in pigs. For the novel candidate genes (i.e., CCDC91, SASH1, SAMD5, MACF1, MFSD2A, EPC2, and MBD5), we obtained public available datasets and performed multi-omics analyses integrating transcriptome-wide association studies and comparative single-cell RNA-seq analyses to uncover the roles of them in mammalian reproductive performance. The genes have not been widely reported to be fertility-related genes and can be complementally considered as prior biological information to modify genomic selections models that benefits pig genetic improvement of litter traits. Besides, our findings provide new insights into the function of ROHet and ROH in mammals.
Collapse
|
8
|
Chang Wu Z, Wang Y, Huang X, Wu S, Bao W. A genome-wide association study of important reproduction traits in large white pigs. Gene 2022; 838:146702. [PMID: 35772658 DOI: 10.1016/j.gene.2022.146702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Augmenting the reproductive efficiency of sows remains the predominant challenge in the swine industry. This work was aimed at scrutinizing vital genetic markers for reproductive traits in this animal. This entailed probing of the records of vital attributes of Large White pigs (n = 695) inclusive of the total number of born (TNB), number of born alive (NBA), number of weaned pigs (NWP), number of healthy births (NHS), total litter weight of piglets born alive (BALWT), weaning litter weight (WNWT), and corrected litter weight at 21 days (W21). A genome-wide association study (GWAS) for the four litter traits and three traits of litter weight in the Denmark Large White population then ensued. We discovered seven significantly related SNPs and eleven potential candidate genes (e.g., TUSC3, THRB for TNB; STT3B for NBA). The subsequent functional enrichment analysis of these genes showed that the significant gene were associated with steroid hormone receptor activity. Our findings indicated that the genes TUSC3, THRB and STT3B probably contribute to litter traits in this population. This work reveals genetic mechanisms of reproduction traits and also supports ensuing genetic improvement employing marker-assisted selection in Large White pigs.
Collapse
Affiliation(s)
- Zheng Chang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Yifu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Xiaoguo Huang
- Jiangsu Engineering Research Centre for Molecular Breeding of Pig, Changzhou 215000, Jiangsu Province, China.
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| |
Collapse
|
9
|
Chen J, Wu Z, Chen R, Huang Z, Han X, Qiao R, Wang K, Yang F, Li XJ, Li XL. Identification of Genomic Regions and Candidate Genes for Litter Traits in French Large White Pigs Using Genome-Wide Association Studies. Animals (Basel) 2022; 12:ani12121584. [PMID: 35739920 PMCID: PMC9219640 DOI: 10.3390/ani12121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The reproductive traits of sows are one of the important economic traits in pig production, and their performance directly affects the economic benefits of the entire pig industry. In this study, a total of 895 French Large White pigs were genotyped by GeneSeek Porcine 50K SNP Beadchip and four phenotypic traits of 1407 pigs were recorded, including total number born (TNB), number born alive (NBA), number healthy piglets (NHP) and litter weight born alive (LWB). To identify genomic regions and genes for these traits, we used two approaches: a single-locus genome-wide association study (GWAS) and a single-step GWAS (ssGWAS). Overall, a total of five SNPs and 36 genomic regions were identified by single-locus GWAS and ssGWAS, respectively. Notably, fourof all five significant SNPs were located in 10.72–11.06 Mb on chromosome 7, were also identified by ssGWAS. These regions explained the highest or second highest genetic variance in the TNB, NBA and NHP traits and harbor the protein coding gene ENSSSCG00000042180. In addition, several candidate genes associated with litter traits were identified, including JARID2, PDIA6, FLRT2 and DICER1. Overall, these novel results reflect the polygenic genetic architecture of the litter traits and provide a theoretical reference for the following implementation of molecular breeding.
Collapse
|
10
|
Wang X, Li G, Ruan D, Zhuang Z, Ding R, Quan J, Wang S, Jiang Y, Huang J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Runs of Homozygosity Uncover Potential Functional-Altering Mutation Associated With Body Weight and Length in Two Duroc Pig Lines. Front Vet Sci 2022; 9:832633. [PMID: 35350434 PMCID: PMC8957889 DOI: 10.3389/fvets.2022.832633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|