1
|
Wang Y, Fu X, Li H. Mechanisms of oxidative stress-induced sperm dysfunction. Front Endocrinol (Lausanne) 2025; 16:1520835. [PMID: 39974821 PMCID: PMC11835670 DOI: 10.3389/fendo.2025.1520835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Oxidative stress plays a pivotal role in male infertility by impairing sperm function through various molecular mechanisms. This review explores the impact of excessive reactive oxygen species (ROS) on spermatozoa, particularly focusing on lipid peroxidation, DNA fragmentation, and protein oxidation. Lipid peroxidation damages sperm membranes, reducing fluidity and motility. ROS-induced DNA fragmentation compromises genetic integrity, potentially leading to infertility and adverse offspring outcomes. Protein oxidation alters key structural proteins, impairing sperm motility and the ability to fertilize an egg. The primary sources of oxidative stress in sperm include leukocyte activity, mitochondrial dysfunction, and environmental factors such as smoking and pollution. Despite the presence of natural antioxidant defenses, spermatozoa are particularly vulnerable due to limited repair mechanisms. The review highlights the importance of early intervention through antioxidant therapies and lifestyle changes to mitigate the detrimental effects of oxidative stress on male fertility. Further research is essential to enhance therapeutic approaches and improve reproductive outcomes.
Collapse
Affiliation(s)
| | | | - Hongjun Li
- Department of Urology, Peking Union Medical Collage Hospital, Beijing, China
| |
Collapse
|
2
|
Tian Z, Wang X, Chen S, Guo Z, Di J, Xiang C. Mitochondria-Targeted Biomaterials-Regulating Macrophage Polarization Opens New Perspectives for Disease Treatment. Int J Nanomedicine 2025; 20:1509-1528. [PMID: 39925677 PMCID: PMC11806677 DOI: 10.2147/ijn.s505591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025] Open
Abstract
Macrophage immunotherapy is an emerging therapeutic approach designed for modulating the immune response to alleviate disease symptoms. The balance between pro-inflammatory and anti-inflammatory macrophages plays a pivotal role in the progression of inflammatory diseases. Mitochondria, often referred to as the "power plants" of the cell, are essential organelles responsible for critical functions such as energy metabolism, material synthesis, and signal transduction. The functional state of mitochondria is closely linked to macrophage polarization, prompting interest in therapeutic strategies that target mitochondria to regulate this process. To this end, biomaterials with excellent targeting capabilities and effective therapeutic properties have been developed to influence mitochondrial function and regulate macrophage polarization. However, a comprehensive summary of biomaterial-driven modulation of mitochondrial function to control macrophage phenotypes is still lacking. This review highlights the critical role of mitochondrial function in macrophage polarization and discusses therapeutic strategies mediated by biomaterials, including mitochondria-targeted biomaterials. Finally, the prospects and challenges of the use of these biomaterials in disease modulation have been explored, emphasizing their potential to be translated to the clinic. It is anticipated that this review will serve as a valuable resource for materials scientists and clinicians in the development of next-generation mitochondria-targeted biomaterials.
Collapse
Affiliation(s)
- Zui Tian
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xudong Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zijian Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
3
|
Wang S, Wang Q, Min L, Cao H, Adetunji AO, Zhou K, Zhu Z. Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation. Antioxidants (Basel) 2025; 14:102. [PMID: 39857436 PMCID: PMC11763317 DOI: 10.3390/antiox14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM). After freezing-thawing, the sperm motility, viability, acrosome integrity, mitochondrial activity, adenosine triphosphate (ATP) levels, DNA integrity, malondialdehyde (MDA) levels, reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, mitochondrial transcription proteins levels, and fertilization capacity were assessed. The results show that 1000 nM PQQ supplementation to the freezing extender significantly enhanced post-thaw sperm motility, viability, and acrosome integrity compared to the control (p < 0.05). Additionally, 1000 nM PQQ increased mitochondrial membrane potential (MMP) and ATP levels, while decreasing MDA and mitochondrial ROS levels, and reducing DNA damage (p < 0.05). Furthermore, the levels of mitochondrial-encoded proteins were significantly elevated in the 1000 nM PQQ group compared to the control (p < 0.05). Interestingly, sperm in the 1000 nM PQQ group showed a higher binding rate to oviductal epithelial cells and the zona pellucida (ZP), indicating higher fertilization potential. These findings suggest that the use of mitochondria-target antioxidant, PQQ, can improve post-thaw boar sperm quality and fertilization via its capacity to reduce oxidative stress and protect mitochondrial function.
Collapse
Affiliation(s)
- Shanpeng Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qi Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lingjiang Min
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hailiang Cao
- Qingdao RATO Industrial and Trading Co., Ltd., Qingdao 266000, China
| | - Adedeji O. Adetunji
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Kaifeng Zhou
- Shandong Provincial Animal Husbandry General Station, Jinan 250022, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Zang S, Zou S, Chen X, Pan B, Ning A, Qin J, Wei Y, Du K, Ye J, Liang Q, Fang Y, Qiongla, Cirenlamu, Song T, Zhou G. Abnormalities in mitochondrial energy metabolism induced by cryopreservation negatively affect goat sperm motility. Front Vet Sci 2025; 11:1514362. [PMID: 39834931 PMCID: PMC11743635 DOI: 10.3389/fvets.2024.1514362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility. The results revealed that goat sperm exhibited mitochondrial vacuolization, reduced matrix density, and significantly decreased levels of high-membrane potential mitochondria and adenosine triphosphate content, accompanied by a substantial increase in reactive oxygen species levels, ultimately leading to a significant decline in sperm viability. Further investigations unveiled that energy-related differential metabolites (capric acid, creatine, and D-glucosamine-6-phosphate) and differential metabolites with antioxidant effects (saikosaponin A, probucol, and cholesterol sulfate) were significantly downregulated. In addition, the activity of key rate-limiting enzymes involved in very long-chain fatty acid biosynthesis and β-oxidation-specifically acetyl-CoA carboxylase, fatty acid synthase, and carnitine palmitoyltransferase I related to capric acid metabolism-was considerably reduced. Furthermore, supplementation of differential metabolite capric acid (500 μM) significantly enhanced the motility of frozen-thawed goat sperm. These findings indicated that the mitochondrial ultrastructure of goat sperm is damaged and energy metabolism becomes abnormal after cryopreservation, potentially affecting sperm viability. The addition of different metabolites such as capric acid to the freezing extender can alleviate the decrease in sperm motility induced by cryopreservation.
Collapse
Affiliation(s)
- Shengqin Zang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Zou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiangyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ao Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jianpeng Qin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaozong Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Kunlin Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiongla
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Cirenlamu
- The Service Station of Agricultural and Animal, Husbandry Technical of Nyalam County, Shigatse, China
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, China
- Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Li Y, Wang H, Hu Z, Zhang G, Wen F, Xian M, Guo S, Zhang G, Zhang X, Hu J. Supplementation of Epimedium polysaccharide (EPS) improves goat semen characteristics following cryopreservation. Anim Reprod Sci 2025; 272:107654. [PMID: 39644766 DOI: 10.1016/j.anireprosci.2024.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Cryopreservation facilitates long-term semen storage and enables the exchange of genetic material among elite livestock over extensive distances. A decrease in sperm quality is an unavoidable outcome of the cryopreservation process. Prior research has established that incorporating cryoprotectants into the diluent can mitigate freeze-induced damage and enhance sperm quality. This study aims to assess the impact of Epimedium polysaccharide (EPS) on the cryopreservation of goat semen. Samples were obtained from six healthy goats following an initial examination. One portion of the semen was diluted with a base solution containing EPS for treatment purposes, whereas another was diluted without EPS, serving as the control. Results indicated that varying concentrations (1, 2, 3, 4, 5 mg/mL) of EPS in the diluent enhanced both physiological characteristics and antioxidant enzyme activities in cryopreserved goat sperm. Further analysis showed that the 3 mg/mL EPS concentration significantly improved sperm motility (52.10 %), plasma membrane integrity (57.01 %), tail plasma membrane integrity (52.37 %), acrosome integrity rate (52.45 %), and antioxidant enzyme activities relative to other groups (P < 0.05). Additionally, the inclusion of 3 mg/mL EPS substantially improved the sperm's fertilization capability. In conclusion, our experiments confirm that EPS supplementation significantly enhances sperm quality post-freezing, with 3 mg/mL identified as the optimal concentration.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, The Youth Innovation Team of Shaanxi Universities, Yangling Vocational & Technical College, Yangling, Shaanxi 712100, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China; College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, PR China
| | - Zhangtao Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Guoyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Fei Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Songmao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Guangzhi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Xing Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Luscombe C, Jones E, Gregorova M, Jones N, Rivino L. Impact of cryopreservation on immune cell metabolism as measured by SCENITH. OXFORD OPEN IMMUNOLOGY 2024; 6:iqae015. [PMID: 39906176 PMCID: PMC11790226 DOI: 10.1093/oxfimm/iqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025] Open
Abstract
The dynamic functioning of immune cells is regulated by cellular metabolic processes, and there is growing interest in the study of immunometabolic correlates of dysfunctional immune responses. SCENITH is a novel flow cytometry-based technique that allows for ex vivo metabolic profiling of immune cells within heterogeneous samples. Cryopreservation of clinical samples is frequently undertaken to facilitate high throughput processing and longitudinal analyses of immune responses, but is thought to lead to cellular metabolic dysfunction. We aimed to investigate the impact of cryopreservation on immune cell metabolism, harnessing SCENITH's unique ability to describe the divergent bioenergetic characteristics of distinct immune cell subsets. We demonstrate that upon activation, T cells are unable to sufficiently/readily undergo metabolic reprogramming. Additionally, we find that cryopreservation introduces a time-dependent metabolic artefact that favours glycolysis and impairs oxidative phosphorylation, suggesting that cryopreservation results in mitochondrial dysfunction. Despite this artefact, SCENITH was still able to reveal the distinct bioenergetic profiles of contrasting immune cells populations following cryopreservation. Whilst SCENITH can provide valuable information about immune cell metabolism even in cryopreserved samples, our findings have important implications for the design of future studies. Investigators should carefully consider how to process and store clinical samples to ensure that cryopreservation does not confound analyses, particularly where longitudinal sampling is required.
Collapse
Affiliation(s)
- Curtis Luscombe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Eben Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
7
|
Zong Y, Li Y, Sun Y, Han X, Yuan J, Ma L, Ma H, Chen J. Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation. Poult Sci 2024; 104:104690. [PMID: 39721280 PMCID: PMC11732459 DOI: 10.1016/j.psj.2024.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa. Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate aspartate shuttle, which is ubiquitous in mitochondria and is associated with cellular metabolism regulation. Thus, this study is the first to investigate GOT2 biological role in chicken spermatozoa during freezing process. The results showed that the sperm total motility, straight-line velocity (VSL) and mitochondrial membrane potential (MMP) of the frozen group were significantly lower than these of the fresh group (P < 0.05). The fresh sperm mitochondrial membrane was continuous and mitochondrial matrix was dense and homogeneous. However, after the freezing-thawing, the density of the matrix was reduced, and the mitochondria appeared slightly swollen and membrane damaged. In chicken sperm, the GOT2 protein was localized in the head and the midpiece of spermatozoa where mitochondria are located by immunostaining analysis. This was consistent with the subcellular localization prediction. GOT2 protein was more abundant in the fresh sperm than in the frozen sperm, which indicated that freezing may lead to sperm mitochondrial damage, reduced GOT protein expression, and affected sperm motility and fertility. The protein-protein interaction prediction of GOT2 protein indicated that its ten most confident interactors were predominantly mitochondria-related proteins. The binding ability was higher between GOT2 protein and two mitochondria-targeted antioxidants, SkQ1 and Mito-TEMPO, respectively. In conclusion, GOT2 played an important role in chicken spermatozoa, which was possibly associated with the regulation of mitochondria function and spermatozoa metabolism. Moreover, it may be a potential cryodamage improvement target for spermatozoa. However, the underlying mechanism of GOT2 in spermatozoa cryopreservation needs further exploration.
Collapse
Affiliation(s)
- Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Qi K, Jia D, Zhou S, Zhang K, Guan F, Yao M, Sui X. Cryopreservation of Immune Cells: Recent Progress and Challenges Ahead. Adv Biol (Weinh) 2024; 8:e2400201. [PMID: 39113431 DOI: 10.1002/adbi.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/02/2024] [Indexed: 12/14/2024]
Abstract
Cryopreservation of immune cells is considered as a key enabling technology for adoptive cellular immunotherapy. However, current immune cell cryopreservation technologies face the challenges with poor biocompatibility of cryoprotection materials, low efficiency, and impaired post-thaw function, limiting their clinical translation. This review briefly introduces the adoptive cellular immunotherapy and the approved immune cell-based products, which involve T cells, natural killer cells and etc. The cryodamage mechanisms to these immune cells during cryopreservation process are described, including ice formation related mechanical and osmotic injuries, cryoprotectant induced toxic injuries, and other biochemical injuries. Meanwhile, the recent advances in the cryopreservation medium and freeze-thaw protocol for several representative immune cell type are summarized. Furthermore, the remaining challenges regarding on the cryoprotection materials, freeze-thaw protocol, and post-thaw functionality evaluation of current cryopreservation technologies are discussed. Finally, the future perspectives are proposed toward advancing highly efficient cryopreservation of immune cells.
Collapse
Affiliation(s)
- Kejun Qi
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Danqi Jia
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaojie Sui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Khalid Iqbal M, Khan B, Hifsa, YuXuan G, Mujahid M, Kiyani MM, Khan H, Bashir S. The Impact of the Blood-Brain Barrier and Its Dysfunction in Parkinson's Disease: Contributions to Pathogenesis and Progression. ACS OMEGA 2024; 9:45663-45672. [PMID: 39583664 PMCID: PMC11579724 DOI: 10.1021/acsomega.4c06546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Parkinson's disease (PD) is a brain disorder in which neuronal cells responsible for the release of dopamine, a neurotransmitter that controls movement, are degenerated or impaired in the substantia nigra and basal ganglia. The disease typically affects people over the age of 5 and presents with a variety of motor and nonmotor dysfunctions, which are unique to each person. The impairment of the blood-brain barrier (BBB) and blood retinal barrier (BRB) due to age-related causes such as weakness of tight junctions or rare genetic factors allows several metabolic intermediates to reach and accumulate inside neurons such as Lewy bodies and α-synuclein, disrupting neuronal homeostasis and leading to genetic and epigenetic changes, e.g., damage to the DNA repair system. This perspective highlights the importance of blood barriers, such as the BBB and BRB, in the progression of PD, as the aggregation of Lewy bodies and α-synuclein disrupts neuronal homeostasis. Genetic and epigenetic factors, neuroinflammation, oxidative stress, and mitochondrial dysfunction play crucial roles in the progression of the disease. The implications of these findings are significant; identifying synaptic dysfunction could lead to earlier diagnosis and treatment, while developing targeted therapies focused on preserving synaptic function may slow or halt disease progression. Understanding the various genetic forms of PD could enable more personalized medicine approaches, and using patient-derived midbrain neurons for research may improve the accuracy of PD models due to the implications of an impaired BBB.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Institute
of Brain Disorders, Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Bakhtawar Khan
- Institute
of Brain Disorders, Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Hifsa
- Department
of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ge YuXuan
- Institute
of Brain Disorders, Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Muhammad Mujahid
- Department
of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mubin Mustafa Kiyani
- Shifa
College of Medical Technology, Shifa Tameer-e-Millat
University, Islamabad 44000, Pakistan
| | - Hamid Khan
- Molecular
Biology and Bio Interfaces Engineering Lab, Department of Biological
Sciences, Faculty of Sciences, International
Islamic University Islamabad. H10, Islamabad 44000, Pakistan
| | - Shahid Bashir
- Neuroscience
Center, King Fahad Specialist Hospital Dammam, Dammam 32253, Saudi Arabia
| |
Collapse
|
10
|
Wei Z, Hong H, Liu W, He K, Wang J, Guo X, Zhang D, Li Q, Yang Z. Quercetin Protects Goat Sperm Motility by Inhibiting Neutrophil Extracellular Traps and Maintaining Plasma Membrane and Acrosome Integrity. Vet Sci 2024; 11:553. [PMID: 39591327 PMCID: PMC11599115 DOI: 10.3390/vetsci11110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Enhancing or protecting sperm motility has always been a pivotal approach to improving the ewe pregnancy rate. Sperm motility is highly susceptible to the immune status of the reproductive tract. Neutrophil extracellular traps (NETs) have been demonstrated to capture sperm and impair its motility in human, swine, and goat species. Quercetin is a flavonoid derived from Cuscuta Chinensis Lam., which can protect sperm from oxidative damage. In this study, we investigated whether inflammation decreases sperm motility and tried to clarify the potential protective mechanism of quercetin on goat sperm motility. Sperm-triggered NETs were analyzed by immunofluorescence analysis. Sperm acrosome integrity was detected by using giemsa staining. Quercetin exhibited no cytotoxicity towards sperm and PMNs within the concentration range of 20-80 μM. PMNs impaired both the survival rate and rapid linear motility of sperm, while quercetin significantly enhanced these parameters. PMNs captured sperm through NETs composed of DNA, citrullinated histone 3 (citH3), and neutrophil elastase (NE); however, quercetin effectively inhibited the release of sperm-stimulated NETs. The stimulation of PMNs with sperm resulted in a significant increase in levels of ROS and MDA, which decreased by quercetin. Moreover, PMNs caused integrity violation to both the plasma membrane and acrosome in sperm; this effect was significantly alleviated by quercetin. In conclusion, quercetin effectively ameliorated PMN-reduced sperm motility through the inhibition of NETs and oxidative stress, and preserving sperm plasma membrane and acrosome integrity, thereby providing preliminary insights into the underlying mechanisms and theoretical support for the development of potential sperm protectors.
Collapse
Affiliation(s)
- Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Hongrong Hong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China (W.L.)
| | - Wei Liu
- School of Animal Science and Technology, Foshan University, Foshan 528225, China (W.L.)
| | - Kaifeng He
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaxuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xin Guo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Dezhi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Qianyong Li
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Zhengtao Yang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China (W.L.)
| |
Collapse
|
11
|
Parsad R, Bagiyal M, Ahlawat S, Arora R, Gera R, Chhabra P, Sharma U. Unraveling the genetic and physiological potential of donkeys: insights from genomics, proteomics, and metabolomics approaches. Mamm Genome 2024:10.1007/s00335-024-10083-y. [PMID: 39510983 DOI: 10.1007/s00335-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Donkeys (Equus asinus) have played a vital role in agriculture, transportation, and companionship, particularly in developing regions where they are indispensable working animals. The domestication of donkeys marked a significant turning point in human history, as they became essential for transportation, agriculture, and trade, especially in arid and semi-arid areas where their resilience and endurance were highly valued. In modern society, donkeys are indispensable due to their diversified applications, including meat, dairy, medicine, and functional bioproducts, supporting economic, cultural, and medical industries. Despite their critical importance, research on donkeys has historically been overshadowed with studies on horses. However, recent advancements in high-throughput sequencing and bioinformatics have significantly deepened our understanding of the molecular landscape of donkey genome, uncovering their unique adaptations, genetic diversity, and potential therapeutic applications. Microsatellite and mitochondrial DNA (mtDNA) markers have proven effective in assessing the genetic diversity of donkeys across various regions of the world. Additionally, significant strides have been made in characterizing differentially abundant genes, proteins, and metabolic profiles in donkey milk, meat, and skin, and in identifying specific genes/proteins/metabolites associated with sperm quality, motility, and reproduction. Advanced genomic technologies, such as genome-wide association studies and the identification of selection signatures, have also been instrumental in delineating genomic regions associated with phenotypic and adaptive traits. This review integrates data from diverse studies, including those on genetic diversity, transcriptomics, whole genome sequencing, protein analysis, and metabolic profiling, to provide a comprehensive overview of donkey biology. It underscores the unique characteristics of donkeys and emphasizes the importance of continued research to improve their genetic management, conservation, and agricultural use, ensuring their ongoing contribution to human societies.
Collapse
Affiliation(s)
- Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
12
|
Jorge M, Ferreira FC, Marques CC, Batista MC, Oliveira PJ, Lidon F, Duarte SC, Teixeira J, Pereira RMLN. Effect of Urolithin A on Bovine Sperm Capacitation and In Vitro Fertilization. Animals (Basel) 2024; 14:2726. [PMID: 39335315 PMCID: PMC11428424 DOI: 10.3390/ani14182726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) play a critical role in the functional competence of sperm cells. Conversely, excessive generation of ROS can impair sperm function, including their fertilization ability. Urolithin A (UA), a gut bacteria-derived metabolite produced from the transformation of ellagitannins, with anti-aging and antioxidant properties, was investigated for the first time in bovine sperm cells in the present study. Firstly, different doses of UA (0, 1, and 10 μM; 8-16 sessions) were used during the capacitation process of frozen-thawed bovine sperm. Sperm motility was assessed using optical microscopy and CASA. Sperm vitality (eosin-nigrosin), ROS, and ATP levels, as well as mitochondrial membrane potential (JC1) and oxygen consumption were evaluated. A second experiment to test the effect of different doses of UA (0, 1, and 10 μM; 9 sessions) in both the capacitation medium, as above, and the fertilization medium, was also implemented. The embryonic development and quality were evaluated. UA, at a concentration of 1 μM, significantly improved sperm movement quality (p < 0.03). There was a trend towards an increase in the oxygen consumption rate (OCR) of capacitated sperm with 1 μM and 10 μM UA supplementation. Moreover, an increase in ATP levels (p < 0.01) was observed, accompanied by a reduction in ROS levels at the higher UA concentration. These results suggest that UA may enhance spermatozoa mitochondrial function, modifying their metabolic activity while reducing the oxidative stress. Also, the number of produced embryos appears to be positively affected by UA supplementation, although differences between the bulls may have mitigated this effect. In conclusion, presented results further support previous findings indicating the potential therapeutic value of UA for addressing reproductive sub/infertility problems and improving ART outcomes. In addition, our results also reinforce the important bull effect on ART and that male sperm bioenergetic parameters should be used to predict spermatozoa functionality and developmental potential.
Collapse
Affiliation(s)
- Manuela Jorge
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
| | - Filipa C. Ferreira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Carla C. Marques
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Maria C. Batista
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
| | - Paulo J. Oliveira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - F. Lidon
- GeoBioTec—Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal;
| | - Sofia C. Duarte
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, 3000-548 Coimbra, Portugal
| | - José Teixeira
- CNC—Centre for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (P.J.O.); (J.T.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rosa M. L. N. Pereira
- Unit of Biotechnology and Genetic Resources, National Institute of Agrarian and Veterinary Research, Quinta da Fonte Boa, 2005-048 Vale de Santarém, Portugal; (M.J.); (F.C.F.); (C.C.M.); (M.C.B.)
- Department of Veterinary Sciences Research Centre, Vasco da Gama University School, Lordemão University Campus, 3020-210 Coimbra, Portugal;
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
13
|
Wróblewski M, Wróblewska W, Sobiesiak M. The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction. Int J Mol Sci 2024; 25:9409. [PMID: 39273356 PMCID: PMC11395468 DOI: 10.3390/ijms25179409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress and its relationship to fertility and reproduction is a topic of interest in medicine, especially in the context of the effects of trace elements and micronutrients. Oxidative stress occurs when there is an excess of free radicals in the body, which can lead to cell and tissue damage. Free radicals are reactive oxygen species (ROS) that can be formed as a result of normal metabolic processes, as well as under the influence of external factors such as environmental pollution, UV radiation, and diet. Oxidative stress has a significant impact on fertility. In men, it can lead to DNA damage in sperm, which can result in reduced semen quality, reduced sperm motility and increased numbers of defective sperm, and free radical damage to sperm cell membranes causing a reduction in the number of available sperm. In women, oxidative stress can affect the quality of female reproductive cells, which can lead to problems with their maturation and with embryo implantation in the uterus and can also affect ovarian function and disrupt hormonal regulation of the menstrual cycle. A proper balance of trace elements and micronutrients is key to protecting against oxidative stress and maintaining reproductive health. Supplementation with appropriate elements such as zinc, selenium, copper, manganese, chromium, and iron can help reduce oxidative stress and improve fertility. This work discusses the effects of selected elements on oxidative stress parameters specifically in terms of fertility and reproduction.
Collapse
Affiliation(s)
- Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
14
|
Li C, Allai L, Liang J, Lv C, Zhao X, Ni X, Wu G, Deng W, Badaoui B, Quan G. The antioxidant effects of butylated hydroxytoluene on cryopreserved goat sperm from a proteomic perspective. PeerJ 2024; 12:e17580. [PMID: 38978759 PMCID: PMC11229688 DOI: 10.7717/peerj.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/25/2024] [Indexed: 07/10/2024] Open
Abstract
At present, there are few reports about the proteomics changes provoked by butylated hydroxytoluene (BHT) supplementation on cryopreserved semen in mammals. Thus, we aimed to evaluate the effects of different concentrations of BHT on goat sperm and to investigate the proteomics changes of adding BHT to cryopreserved goat (Capra hircus) sperm. Firstly, semen samples were collected from four goats, and frozen in the basic extenders containing different concentrations of BHT (0.5 mM, 1.0 mM, 2.0 mM) and a control without BHT, respectively. After thawing, the protective effects of dose-dependent replenished BHT to the freezing medium on post-thaw sperm motility, integrities of plasma membrane and acrosome, reactive oxygen species levels were confirmed, with 0.5 mM BHT being the best (B group) as compared to the control (without BHT, C group). Afterwards, TMT-based quantitative proteomic technique was performed to profile proteome of the goat sperm between C group and B group. Parallel reaction monitoring was used to confirm reliability of the data. Overall, 2,476 proteins were identified and quantified via this approach. Comparing the C and B groups directly (C vs. B), there were 17 differentially abundant proteins (DAPs) po-tentially associated with sperm characteristics and functions were identified, wherein three were upregulated and 14 were downregulated, respectively. GO annotation analysis demonstrated the potential involvement of the identified DAPs in metabolic process, multi-organism process, reproduction, reproductive process, and cellular process. KEGG enrichment analysis further indicated their potential roles in renin-angiotensin system and glutathione metabolism pathways. Together, this novel study clearly shows that BHT can effectively improve quality parameters and fertility potential of post-thawed goat sperm at the optimal concentration, and its cryoprotection may be realized through regulation of sperm metabolism and antioxidative capability from the perspective of sperm proteomic modification.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Larbi Allai
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| | - Weidong Deng
- School of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming, China
- Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming, China
| |
Collapse
|
15
|
Zhou Z, Li W, Ni L, Wang T, Huang Y, Yu Y, Hu M, Liu Y, Wang J, Huang X, Wang Y. Icariin improves oxidative stress injury during ischemic stroke via inhibiting mPTP opening. Mol Med 2024; 30:77. [PMID: 38840035 PMCID: PMC11155182 DOI: 10.1186/s10020-024-00847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Weili Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lu Ni
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Tianlun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yan Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yuanqi Yu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Mingxin Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Yinling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jin'e Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xiaofei Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, 443002, P. R. China.
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, P. R. China.
| | - Yanyan Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, P. R. China.
| |
Collapse
|
16
|
Min CG, Ma X, Wang YC, Zhong CK, Yuan CS, Zhang KY, Zhan CL, Hou SK, Wang XH, Wang J, Zhao J, Fang Y, Liu HY, Ding H, Guo J, Lu WF. The effects of repeated freezing and thawing on bovine sperm morphometry and function. Cryobiology 2024; 115:104892. [PMID: 38593909 DOI: 10.1016/j.cryobiol.2024.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.
Collapse
Affiliation(s)
- Chang-Guo Min
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yu-Chan Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Cheng-Kun Zhong
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Chong-Shan Yuan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Kai-Yan Zhang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Cheng-Lin Zhan
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Sheng-Kui Hou
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin-Hai Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Hong-Yu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China.
| | - Wen-Fa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Xu Y, Sun S, Fu Y, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Positive In Vitro Effect of ROCK Pathway Inhibitor Y-27632 on Qualitative Characteristics of Goat Sperm Stored at Low Temperatures. Animals (Basel) 2024; 14:1441. [PMID: 38791659 PMCID: PMC11117216 DOI: 10.3390/ani14101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Y-27632, as a cytoskeleton protector, is commonly used for low-temperature preservation of cells. Goat sperm are prone to damage to the cytoskeleton under low-temperature conditions, leading to a loss of sperm vitality. However, the Y-27632 small molecule has not yet been used in research on low-temperature preservation of goat semen. This study aims to address the issue of low temperature-induced loss of sperm motility in goats by using Y-27632, and explore the regulation of Y-27632 on goat sperm metabolism. At a low temperature of 4 °C, different concentrations of Y-27632 were added to the sperm diluent. The regulation of Y-27632 on the quality of low temperature-preserved goat semen was evaluated by detecting goat sperm motility, antioxidant capacity, mitochondrial activity, cholesterol levels, and metabolomics analysis. The results indicated that 20 µM Y-27632 significantly increased plasma membrane integrity (p < 0.05), and acrosome integrity (p < 0.05) and sperm motility (p < 0.05), increased levels of superoxide dismutase (SOD) and catalase (CAT) (p < 0.01), increased total antioxidant capacity (T-AOC) (p < 0.05), decreased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (p < 0.01), and significantly increased mitochondrial membrane potential (MMP). The levels of ATP, Ca2+, and TC in sperm increased (p < 0.01). Twenty metabolites with significant differences were identified, with six metabolic pathways having a significant impact, among which the D-glutamic acid and D-glutamine metabolic pathways had the most significant impact. The artificial insemination effect of goat semen treated with 20 μM Y-27632 was not significantly different from that of fresh semen. This study indicates that Y-27632 improves the quality of low-temperature preservation of sperm by protecting the sperm plasma membrane, enhancing sperm antioxidant capacity, regulating D-glutamine and D-glutamate metabolism, and promoting the application of low-temperature preservation of semen in artificial insemination technology.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.X.); (S.S.); (Y.F.); (L.W.); (C.R.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
18
|
Díaz Ruiz E, González Ariza A, León Jurado JM, Arando Arbulu A, Fernández-Bolaños Guzmán J, Bermúdez Oria A, Delgado Bermejo JV, Navas González FJ. Evaluation of the effect of the addition of an olive oil-derived antioxidant (Pectoliv-80A) in the extender for cryopreservation of rooster sperm through the use of a discriminant statistical tool. Poult Sci 2024; 103:103630. [PMID: 38513548 PMCID: PMC10973192 DOI: 10.1016/j.psj.2024.103630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
During the poultry sperm cryopreservation process, an excess of reactive oxygen species is generated resulting in oxidative stress which harms the quality of avian spermatozoa. To counteract this effect, the addition of exogenous antioxidants, such as Pectoliv-80A (a by-product of olive oil), to the cryopreservation diluent is interesting. For this purpose, 16 roosters belonging to the Utrerana avian breed were used. Six semen pools (from the 6 different replicates) were divided into 4 aliquots corresponding to different concentrations of Pectoliv-80A that were tested (0, 300, 400, and 500 μg/mL), and the cryopreservation process was carried out. To evaluate post-thawing semen quality, different parameters such as motility, membrane functionality, reactive oxygen species production, lipid peroxidation, and acrosome integrity were studied. A discriminant canonical analysis was used to determine both the differences between the Pectoliv-80A concentration groups and the discriminant power of the aforementioned parameter used for semen evaluation. Total motility and membrane functionality were reported to be the most discriminant variables for differentiating the different antioxidant enrichment groups and concluded that concentrations of 300 μg/mL showed the most desirable quality of post-thawing semen. The present study could lead to the optimization of both cryopreservation and quality evaluation techniques of the sperm of rooster species, that support the conservation program of endangered local breeds.
Collapse
Affiliation(s)
- Esther Díaz Ruiz
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, 14071, Spain
| | | | | | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, 14071, Spain
| | | | - Alejandra Bermúdez Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, (CSIC), Sevilla, 41013, Spain
| | | | | |
Collapse
|
19
|
Park C, Cha HJ, Hwangbo H, Bang E, Kim HS, Yun SJ, Moon SK, Kim WJ, Kim GY, Lee SO, Shim JH, Choi YH. Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage. Biomol Ther (Seoul) 2024; 32:329-340. [PMID: 38586992 PMCID: PMC11063488 DOI: 10.4062/biomolther.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 04/09/2024] Open
Abstract
Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644, Republic of Korea
- Institute of Urotech, Cheongju 28120, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
20
|
Wang SC, Wu YY, Chen MC. Predicting the cryotolerance of boar sperm through antioxidant stress. Reprod Domest Anim 2024; 59:e14554. [PMID: 38566374 DOI: 10.1111/rda.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
High sperm cryotolerance is crucial to the successful cryopreservation of boar sperm. Evaluating the cryotolerance of boar sperm by using a rapid and convenient technique can enhance the commercial viability of these sperm. This study investigated the correlation between sperm parameters for three sample subsets-fresh sperm, sperm with H2O2-induced oxidative damage (hereinafter referred to as H2O2-induced sperm), and frozen-thawed sperm-to identify the potential of these correlations to predict cryotolerance. A total of 64 sperm samples were obtained from 64 Duroc boars. The sperm parameters of the three subsets, where the frozen-thawed sperm were analysed at 30 or 180 min after thawing, were determined, and the coefficients of correlation between these parameters were calculated. The results indicated that H2O2-induced oxidative stress resulted in decreases in various sperm parameters-including total motility (TM), viability (VIA), mitochondrial membrane potential (MMP), and live sperm with MMP (LMP)-but increased their coefficients of variation. Receiver operating characteristic (ROC) curve analysis revealed that the kinematic parameters of the H2O2-induced sperm effectively predicted those of the frozen-thawed boar sperm at 30 min after thawing; the corresponding area under the ROC curve (AUC) was 0.8667 for TM and 0.8733 for progressive motility in the H2O2-induced sperm. For measurement at 180 min after thawing, the sperm membrane and mitochondrial parameters of the H2O2-induced sperm effectively predicted the LMP of the frozen-thawed boar sperm; the corresponding AUC was 0.8489 for VIA, 0.8289 for MMP, and 0.8444 for LMP. To our knowledge, this is the first study to directly establish a strong correlation between post-thaw boar sperm quality and H2O2-induced oxidative stress before freezing. Our proposed technique can serve as a valuable reference for the development of practical applications aimed at enhancing techniques for cryopreserving boar sperm.
Collapse
Affiliation(s)
- Shih-Chung Wang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan, R.O.C
| | - Yi-Ying Wu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan, R.O.C
| | - Ming-Cheng Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan, R.O.C
| |
Collapse
|
21
|
Park C, Hwangbo H, Kim SO, Noh JS, Park SH, Hong SH, Hong SH, Kim GY, Choi YH. Anthocyanins Inhibits Oxidative Injury in Human Retinal Pigment Epithelial ARPE-19 Cells via Activating Heme Oxygenase-1. J Microbiol Biotechnol 2024; 34:596-605. [PMID: 38044685 PMCID: PMC11016763 DOI: 10.4014/jmb.2310.10011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food Science and Biotechnology, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Sang Hoon Hong
- Department of Internal Medicine, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
22
|
Baharsaadi M, Hezavehei M, Shahverdi A, Halvaei I. Evaluation of the effects of hydroxytyrosol on human sperm parameters during cryopreservation. Cryobiology 2024; 114:104840. [PMID: 38104853 DOI: 10.1016/j.cryobiol.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Human sperm cryopreservation is a routine procedure in assisted reproductive technology, but it has detrimental effects on different sperm parameters due to oxidative stress. Our objective was to assess the impacts of hydroxytyrosol (HT), as an antioxidant, on human sperm parameters following cryopreservation. In the first phase, 20 normal human semen samples were cryopreserved using the rapid freezing method with different concentrations of HT including 0, 50, 100, 150, and 200 μg/mL. In the second phase, 20 normal semen samples were collected and cryopreserved with 50 and 100 μg/mL HT. The beneficial effects of HT were determined by evaluation of motility (computer-assisted sperm analysis; CASA), viability (Eosin-nigrosine stain), DNA integrity (sperm chromatic dispersion test, SCD), reactive oxygen species (DCF and DHE staining by flowcytometry) lipid peroxidation (malondialdehyde, MDA test) and mitochondrial membrane potential (JC1 staining by flowcytometry) of sperm after cryopreservation. After thawing, sperm motility had an increasing trend in 50 and 100 μg/mL HT groups in comparison with other groups, althought the difference was not significant. However, sperm viability was significantly increased at 50 and 100 μg/mL HT. Our data also showed that sperm DNA fragmentation was significantly decreased after thawing at 100 μg/mL in comparison with 0 and 50 μg/mL HT. However, the level of intracellular reactive oxygen species, lipid peroxidation and mitochondrial membrane potential were not significantly different between groups. Our results showed that HT may have protective effects on the viability and DNA integrity of human sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mojtaba Baharsaadi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Hu B, Zhang H, Li Y, Xue Q, Yang M, Cao C, Gao L, Chu G, Cai R, Zheng Y, Pang W. Kojic acid inhibits pig sperm apoptosis and improves capacitated sperm state during liquid preservation at 17°C. Mol Reprod Dev 2024; 91:e23738. [PMID: 38462735 DOI: 10.1002/mrd.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 03/12/2024]
Abstract
The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.
Collapse
Affiliation(s)
- Bingyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haize Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Xue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Menghao Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
25
|
Ahmed H, Jahan S, Ijaz MU, Riaz M, Ullah F. Relaxin (a regulatory-peptide) enhances cryotolerance, fertility potential and plasma reproductive hormones of Nili Ravi buffalo (Bubalus bubalis) during low breeding season. Res Vet Sci 2023; 164:104996. [PMID: 37688902 DOI: 10.1016/j.rvsc.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the beneficial effects of relaxin on cryotolerance of buffalo spermatozoa and reproductive hormones during low breeding season. Collected semen was diluted in five aliquots with relaxin addition (0.25 mg/mL, 0.50 mg/mL, 0.75 mg/mL, 1 mg/mL, and control). After gentle dilution (37°C), cooling (4°C, 2 h), equilibration (4°C, 4 h), and packaging (straws, polyvinyl French, 0.5 mL), frozen (cell freezer), and thawed (37°C, 30 s) for analysis. Blood samples were collected at different time intervals i.e., -60, -30 and 0 min (pre-dose) and 30, 60, 90, 120 and 150 min (post-dose) from a jugular vein. This study manifest that adding relaxin (1 mg/ mL) in freezing medium ameliorates sperm motility, functionality (%), and seminal plasma total antioxidant capacity (TAC, μM/L) than control during low breeding season. Furthermore, we found that relaxin supplementation at 1 mg/mL significantly improves seminal plasma ATP concentrations (nmol/million) than control, 0.25 mg/mL, and 0.50 mg/mL, and fertility (control, and 0.75 mg/mL). Further, relaxin injection significantly improves plasma T, LH and IGF-1 levels (150 and 120 min vs. -60, and - 30), and FSH, KP, and GnRH concentrations (150 min vs. -60), during low breeding season. Taken together, this study revealed that relaxin ameliorates motility, functionality, and fertility of buffalo spermatozoa. Moreover, relaxin injection (1 mg/mL) improves essential reproductive hormones levels in buffalo signifying its importance in the field of reproductive physiology. Further studies are required to determine the exact mechanism of action of relaxin in enhancing semen quality, fertility and reproductive hormones.
Collapse
Affiliation(s)
- Hussain Ahmed
- Reproductive Physiology Laboratory, Department of Animal Sciences, Quaid-i-Azam University (QAU), Islamabad, Pakistan; Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Sarwat Jahan
- Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mehreen Riaz
- Department of Zoology, Women University Swabi, KP, Pakistan
| | - Farhad Ullah
- Department of Zoology, Islamia College University Peshawar, KP, Pakistan
| |
Collapse
|
26
|
Romano M, Cirillo F, Spadaro D, Busnelli A, Castellano S, Albani E, Levi-Setti PE. High sperm DNA fragmentation: do we have robust evidence to support antioxidants and testicular sperm extraction to improve fertility outcomes? a narrative review. Front Endocrinol (Lausanne) 2023; 14:1150951. [PMID: 37867514 PMCID: PMC10585152 DOI: 10.3389/fendo.2023.1150951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023] Open
Abstract
To date, infertility affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to 50% of cases. Oral supplementation with antioxidants could be helpful to improve sperm quality by reducing oxidative damage. At the same time, there is a growing interest in the literature on the use of testicular sperm in patients with high DNA fragmentation index (DFI). This narrative review aims to evaluate the effectiveness of supplementation of oral antioxidants in infertile men with high DFI compared to testicular sperm retrieval. The current evidence is non-conclusive because of serious risk of bias due to small sample sizes and statistical methods. Further large well-designed randomised placebo-controlled trials are still required to clarify the exact role of these to different therapeutic approaches.
Collapse
Affiliation(s)
- Massimo Romano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Federico Cirillo
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Daria Spadaro
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Busnelli
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefano Castellano
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Emanuele Levi-Setti
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
27
|
Rezaei A, Bahmani HR, Mafakheri S, Farshad A, Nazari P, Masoudi R. Protective effects of different doses of MitoQ separately and combined with trehalose on oxidative stress and sperm function of cryopreserved Markhoz goat semen. Cryobiology 2023; 110:36-43. [PMID: 36581061 DOI: 10.1016/j.cryobiol.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
The mitochondria-targeted antioxidant MitoQ has been regarded as an effective antioxidant agent against cryo-induced oxidative cellular damage. This study aimed to evaluate the use of different doses of MitoQ combined with trehalose to minimize mitochondrial impairment and oxidative stress during sperm cryopreservation of Markhoz goat. For this, semen samples (n = 50) were collected by electroejaculation every 5 days from 5 bucks in 10 replicates. On each collection day, 5 ejaculates (one ejaculate for each buck) were pooled and then diluted in eight different Tris-based extenders as follows: no additives (control), 20, 200, 2000 nM of MitoQ (MT20, MT200, MT 2000, respectively), 150 mM of trehalose (Tr), MT20+Tr, MT200+Tr, MT2000+Tr. The semen samples were frozen using a standard protocol, and sperm function and oxidative stress were evaluated after thawing. The semen extender supplemented with MT200+Tr had higher (P < 0.05) total and progressive motility, acrosome and membrane integrity, superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and lower (P < 0.05) DNA fragmentation, malondialdehyde and intracellular hydrogen peroxide levels than the all other groups except MT200; meanwhile, MT200 was also improved (P < 0.05) in these parameters than in the control group. Furthermore, MT200 and MT200+Tr showed higher (P < 0.05) percentages of live cryopreserved sperm with high mitochondrial activity than other groups. However, abnormality percentage and catalase activity of frozen-thawed sperm were not affected by treatments (P > 0.05). To conclude, we have found that supplementation of 200 nM MitoQ alone or in combination with 150 mM trehalose to semen extender improved the quality of cryopreserved sperm in goats, which is associated with enhanced antioxidant enzymatic defense and mitochondrial activity and reduced DNA fragmentation.
Collapse
Affiliation(s)
- Ako Rezaei
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran; Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Hamid Reza Bahmani
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Shiva Mafakheri
- Department of Animal Science, Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, 6616936311, Iran.
| | - Abbas Farshad
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Parisa Nazari
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 661715175, Iran.
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, 3146618361, Iran.
| |
Collapse
|
28
|
Park C, Cha HJ, Hwangbo H, Ji SY, Kim DH, Kim MY, Bang E, Hong SH, Kim SO, Jeong SJ, Lee H, Moon SK, Shim JH, Kim GY, Cho S, Choi YH. Phloroglucinol Inhibits Oxidative-Stress-Induced Cytotoxicity in C2C12 Murine Myoblasts through Nrf-2-Mediated Activation of HO-1. Int J Mol Sci 2023; 24:4637. [PMID: 36902068 PMCID: PMC10003575 DOI: 10.3390/ijms24054637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Sung Ok Kim
- Department of Food and Nutrition, College of Life and Health, Kyungsung University, Busan 48434, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene & Institute of Basic Science for Well-Aging, Youngsan University, Yangsan 50510, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology & Natural Resource, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
29
|
Kolyada MN, Osipova VP, Berberova NT. Use of cryoprotectors and antioxidants in sturgeon semen cryopreservation. Cryobiology 2023:S0011-2240(23)00022-6. [PMID: 36791902 DOI: 10.1016/j.cryobiol.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In recent years, the possibility of increasing the low cryoresistance of sturgeon sperm by using antioxidants in basic cryoprotective media has been studied. The goal of this work was to review the current literature on impact of the cryoprotectors, well-known antioxidants and new multifunctional compounds on the activity indicators and fertilizing capability of sperm, as well as on biomarkers of cryostress. A special attention is given to the radical scavenging activity of studied compounds in relation to the highly reactive oxygen species, to prevent and negate oxidative stress damage of sturgeon sperm. Also, new trends for future research through the application of novel polyfunctional antioxidants to sturgeon sperm cryopreservation were indicated.
Collapse
Affiliation(s)
- M N Kolyada
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - V P Osipova
- Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., 344006, Rostov-on-Don, Russia.
| | - N T Berberova
- Astrakhan State Technical University, 16 Tatisheva str., 414056, Astrakhan, Russia.
| |
Collapse
|
30
|
Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int J Mol Sci 2023; 24:ijms24043379. [PMID: 36834790 PMCID: PMC9960060 DOI: 10.3390/ijms24043379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
For decades now, sperm cryopreservation has been a pillar of assisted reproduction in animals as well as humans. Nevertheless, the success of cryopreservation varies across species, seasons, and latitudes and even within the same individual. With the dawn of progressive analytical techniques in the field of genomics, proteomics, and metabolomics, new options for a more accurate semen quality assessment have become available. This review summarizes currently available information on specific molecular characteristics of spermatozoa that could predict their cryotolerance before the freezing process. Understanding the changes in sperm biology as a result of their exposure to low temperatures may contribute to the development and implementation of appropriate measures to assure high post-thaw sperm quality. Furthermore, an early prediction of cryotolerance or cryosensitivity may lead to the establishment of customized protocols interconnecting adequate sperm processing procedures, freezing techniques, and cryosupplements that are most feasible for the individual needs of the ejaculate.
Collapse
|
31
|
Park C, Kim DH, Kim TH, Jeong SU, Yoon JH, Moon SK, Kwon CY, Park SH, Hong SH, Shim JH, Kim GY, Choi YH. Improvement of Oxidative Stress-induced Cytotoxicity of Angelica keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
33
|
Li S, Ren J, Zhang W, Wang B, Ma Y, Su L, Dai Y, Liu G. Glutathione and selenium nanoparticles have a synergistic protective effect during cryopreservation of bull semen. Front Vet Sci 2023; 10:1093274. [PMID: 36876009 PMCID: PMC9978397 DOI: 10.3389/fvets.2023.1093274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction In the present study, the synergistic protective effect of co-supplementation of glutathione (GSH) with selenium nanoparticles (SeNPs) on the cryopreservation efficiency of bull semen was analyzed. Methods After collection, the ejaculates of Holstein bulls were subsequently diluted with a Tris extender buffer supplemented with different concentrations of SeNPs (0, 1, 2, and 4 μg/ml), followed by semen equilibration at 4°C and assessment of sperm viability and motility. Subsequently, the ejaculates of Holstein bulls were pooled, split into four equal groups, and diluted with a Tris extender buffer supplemented with basic extender (negative control group, NC group), 2 μg/ml SeNPs (SeNPs group), 4 mM GSH (GSH group), and 4 mM GSH plus 2 μg/ml SeNPs (GSH + SeNPs group). After cryopreservation, motility, viability, mitochondrial activity, plasma membrane integrity, acrosome integrity, concentration of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT), and ability of frozen-thawed sperm cells to support in vitro embryonic development were evaluated. Results and discussion No side effect of SeNPs concentrations applied in the current study on the motility and viability of equilibrated bull spermatozoa was found. Meanwhile, supplementation of SeNPs significantly promoted the motility and viability of equilibrated bull spermatozoa. Furthermore, the co-supplementation of GSH with SeNPs effectively protected bull spermatozoa from cryoinjury as expressed by promoting semen motility, viability, mitochondrial activity, plasma membrane integrity, and acrosome integrity. Finally, the enhanced antioxidant capacity and embryonic development potential in the frozen-thawed bull spermatozoa cryopreserved by co-supplementation of GSH with SeNPs further confirmed the synergistic protective effect of co-supplementation of GSH with SeNPs on the cryopreservation of bull semen.
Collapse
Affiliation(s)
- Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Yuzhen Ma
- Center of Reproductive Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
34
|
Cosme P, Rodríguez AB, Garrido M, Espino J. Coping with Oxidative Stress in Reproductive Pathophysiology and Assisted Reproduction: Melatonin as an Emerging Therapeutical Tool. Antioxidants (Basel) 2022; 12:antiox12010086. [PMID: 36670948 PMCID: PMC9854935 DOI: 10.3390/antiox12010086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Infertility is an increasing global public health concern with socio-psychological implications for affected couples. Remarkable advances in reproductive medicine have led to successful treatments such as assisted reproductive techniques (ART). However, the search for new therapeutic tools to improve ART success rates has become a research hotspot. In the last few years, pineal indolamine melatonin has been investigated for its powerful antioxidant properties and its role in reproductive physiology. It is considered a promising therapeutical agent to counteract the detrimental effects associated with oxidative stress in fertility treatments. The aim of the present narrative review was to summarize the current state of the art on the importance of melatonin in reproductive physiology and to provide a critical evaluation of the data available encompassing basic, translational and clinical studies on its potential use in ART to improve fertility success rates.
Collapse
Affiliation(s)
| | | | - María Garrido
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| | - Javier Espino
- Correspondence: (M.G.); (J.E.); Tel.: +34-924289796 (M.G. & J.E.)
| |
Collapse
|
35
|
Park C, Cha HJ, Kim MY, Bang E, Moon SK, Yun SJ, Kim WJ, Noh JS, Kim GY, Cho S, Lee H, Choi YH. Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel) 2022; 11:antiox11122353. [PMID: 36552561 PMCID: PMC9774705 DOI: 10.3390/antiox11122353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Republic of Korea
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Correspondence: (H.L.); (Y.H.C.); Tel.: +82-51-890-8129 (H.L.); +82-51-890-3319 (Y.H.C.)
| |
Collapse
|
36
|
Viana AGDA, Ribeiro IM, Carvalho RPR, Memili E, Moura ADA, Machado-Neves M. Contributions of seminal plasma proteins to fertilizing ability of bull sperm: A meta-analytical review. Andrologia 2022; 54:e14615. [PMID: 36261879 DOI: 10.1111/and.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/02/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022] Open
Abstract
Seminal plasma is a dynamic, intricate combination of fluids from the testicles, epididymides, seminal vesicles, bulbourethral glands, and prostate, containing molecules that modulate sperm functions, post-fertilization events, and the female reproductive tract physiology. Significant variations in sperm parameters and fertility status of bulls relate to differences in the seminal plasma proteome. In this framework, a meta-analytical study was conducted examining 29 studies (published between 1990 and 2021) to ascertain the effects of seminal fluid proteins on parameters associated with bull fertility and the influence of distinct methodologies on such effects. Our results revealed that seminal proteins ameliorate sperm parameters, such as motility, integrity, capacitation, and fertilizing ability, and favours sperm protection. Seminal binder of sperm proteins and beta-defensin 126 highly favoured sperm protection when cells were collected from the epididymis by retrograde flux and analysed under room temperature conditions. Furthermore, seminal proteins improved the motility and quality of Bos taurus sperm collected by artificial vagina, mainly in the presence of heparin-binding proteins. The key limitations faced by this meta-analysis were the paucity of studies evaluating the effects of whole seminal fluid proteins and the limited number of studies conducted in vivo. In conclusion, the present meta-analytical study confirms that seminal proteins improve fertility-related parameters in the bovine species. However, methodological strategies used by authors are diverse, with distinct endpoints and methods. Thus, the translational aspects of seminal plasma research should be taken into consideration to precisely define how seminal proteins can be harnessed to advance reproductive biotechnology.
Collapse
Affiliation(s)
| | | | | | - Erdogan Memili
- Cooperative Agricultural Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, Texas, USA
| | | | - Mariana Machado-Neves
- Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Brasil.,Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brasil
| |
Collapse
|
37
|
The Use of Quercetin to Improve the Antioxidant and Regenerative Properties of Frozen or Cryopreserved Human Amniotic Membrane. Antioxidants (Basel) 2022; 11:antiox11071250. [PMID: 35883741 PMCID: PMC9311548 DOI: 10.3390/antiox11071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
The biological properties of the human amniotic membrane (HAM) and its characteristic ability to be a reservoir of growth factors promoting wound healing make it an ideal biological dressing for the treatment of different clinical conditions, such as burns and non-healing wounds. However, the application of a preservation method on the HAM is required during banking to maintain biological tissue properties and to ensure the release overtime of protein content for its final clinical effectiveness after application on the wound bed. Although cryopreservation and freezing are methods widely used to maintain tissue properties, reactive oxygen species (ROS) are produced within tissue cellular components during their switching from frozen to thawed state. Consequently, these methods can lead to oxidative stress-induced cell injury, affecting tissue regenerative properties and its final clinical effectiveness. Taking advantage of the antioxidant activity of the natural compound quercetin, we used it to improve the antioxidant and regenerative properties of frozen or cryopreserved HAM tissues. In particular, we evaluated the oxidative damage (lipid peroxidation, malondialdehyde) as well as the regenerative/biological properties (bFGF growth factor release, wound healing closure, structure, and viability) of HAM tissue after its application. We identified the effectiveness of quercetin on both preservation methods to reduce oxidative damage, as well as its ability to enhance regenerative properties, while maintaining the unaltered structure and viability of HAM tissue. The use of quercetin described in this study appears able to counteract the side effects of cryopreservation and freezing methods related to oxidative stress, enhancing the regenerative properties of HAM. However, further investigations will need to be performed, starting from these promising results, to identify its beneficial effect when applied on burns or non-healing wounds.
Collapse
|
38
|
Minucci S, Venditti M. New Insight on the In Vitro Effects of Melatonin in Preserving Human Sperm Quality. Int J Mol Sci 2022; 23:ijms23095128. [PMID: 35563519 PMCID: PMC9100642 DOI: 10.3390/ijms23095128] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa (SPZ) are sensitive to stressful conditions, particularly oxidative stress, which alters their quality; thus, the use of protective molecules as an antioxidant is encouraged. Herein, we used melatonin (MLT) to investigate its in vitro effects on human sperm parameters under conditions of oxidative stress induced by cadmium (Cd). Fifteen human semen samples were divided into control, Cd-treated, MLT-treated, and Cd+MLT-treated groups and analyzed after 30 min, 6 h, and 24 h of exposure. Results showed a time-dependent decrease in SPZ motility, DNA integrity, and increased apoptosis induced by oxidative stress, and these effects were counteracted by MLT co-treatment. Based on these data, we further explored additional parameters just at 24 h. The induced oxidative stress, highlighted by the increased lipid peroxidation, reduced the percentage of SPZ able to undertake acrosome reaction and altered the levels and localization of some protein markers of motility (PREP, RSPH6A), morphology (DAAM1), and acrosome membrane (PTMA, IAM38); all these effects were counteracted by MLT co-treatment. Interestingly, MLT alone was able to ameliorate motility at 30 min of incubation compared to the control, while at 24 h, it prevented the physiological alteration in terms of motility, DNA integrity, and apoptosis. Collectively, the data encourage MLT use as an integrative molecule to ameliorate human gamete quality when compromised by stressful conditions.
Collapse
|