1
|
Chen J, Lin C, Huang X, Bian W. Baicalin enhances proliferation and reduces inflammatory-oxidative stress effect in H 2O 2-induced granulosa cells apoptosis via USP48 protein regulation. BMC Complement Med Ther 2024; 24:42. [PMID: 38245760 PMCID: PMC10799411 DOI: 10.1186/s12906-024-04346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation can lead to apoptosis of ovarian granulosa cells (GCs), resulting in ovulation disorders and infertility. Baicalin (BAI) promotes cell proliferation and reduces inflammation and oxidative stress. However, the mechanisms by which BAI treatment affects oxidative stress and inflammation in GCs remain incompletely understood. METHODS KGN cells were treated with hydrogen peroxide (H2O2) to analyze the effect of oxidative stress on GCs in vitro. Subsequently, H2O2-stimulated KGN cells were treated with BAI. The levels of GSH-Px, CAT, and SOD were measured using an activity assay kit. The levels of MDA, IL-1β, IL-6, IL-8, and TNF-α were measured by ELISA. Proliferation, apoptosis, and mRNA and protein levels were measured using the CCK8, flow cytometry, qRT-PCR, and western blotting. RESULTS H2O2 treatment inhibited KGN cell proliferation and promoted apoptosis, accompanied by increased oxidative stress and inflammation. BAI promoted proliferation, inhibited apoptosis, and reduced oxidative stress and inflammation in H2O2-stimulated KGN cells. BAI treatment promoted USP48 protein expression, and USP48 knockdown abrogated the protective effects of BAI, indicating that USP48 is a downstream mediator of BAI. CONCLUSION BAI treatment enhanced cell proliferation and ameliorated oxidative stress and inflammation by enhancing USP48 protein expression. BAI, which is used clinically and as a dietary supplement, may alleviate oxidative stress-induced GC injury and ovarian disorders.
Collapse
Affiliation(s)
- Jun Chen
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Chuhua Lin
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China
| | - Xiurong Huang
- Department of Rehabilitation Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Bian
- Department of Traditional Chinese Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University; The First Affiliated Hospital of Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.
| |
Collapse
|
2
|
Xu G, Dong Y, Wang Z, Ding H, Wang J, Zhao J, Liu H, Lv W. Melatonin Attenuates Oxidative Stress-Induced Apoptosis of Bovine Ovarian Granulosa Cells by Promoting Mitophagy via SIRT1/FoxO1 Signaling Pathway. Int J Mol Sci 2023; 24:12854. [PMID: 37629033 PMCID: PMC10454225 DOI: 10.3390/ijms241612854] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative-stress-induced apoptosis of granulosa cells is considered to be a main driver of follicular atresia. Increasing evidence suggests a protective effect of melatonin against oxidative damage but the mechanism remains unclear. The aim of this study is to investigate the effects of melatonin on mitophagy and apoptosis of bovine ovarian granulosa cells under oxidative stress, and to clarify the mechanism. Our results indicate that melatonin inhibited H2O2-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells, as revealed by decreased apoptosis rate, reactive oxygen species (ROS) levels, Ca2+ concentration, and cytochrome C release and increased mitochondrial membrane potential (ΔΨm). Simultaneously, melatonin promoted mitophagy of bovine ovarian granulosa cells through increasing the expression of PTEN-induced putative kinase 1 (PINK1), PARKIN, BECLIN1, and LC3II/LC3I; decreasing the expression of sequestosome 1 (SQSMT1); and promoting mitophagosome and lysosome fusion. After treatment with a mitophagy inhibitor CsA, we found that melatonin alleviated apoptosis and mitochondrial injury through promoting mitophagy in bovine ovarian granulosa cells. Furthermore, melatonin promoted the expression of silent information regulator 1 (SIRT1) and decreased the expression level of forkhead transcription factors class O (type1) (FoxO1). By treatment with an SIRT1 inhibitor EX527 or FoxO1 overexpression, the promotion of melatonin on mitophagy as well as the inhibition on mitochondrial injury and apoptosis were reversed in bovine ovarian granulosa cells. In conclusion, our results suggest that melatonin could promote mitophagy to attenuate oxidative-stress-induced apoptosis and mitochondrial injury of bovine ovarian granulosa cells via the SIRT1/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Gaoqing Xu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yangyunyi Dong
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lv
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Liu S, Jia Y, Meng S, Luo Y, Yang Q, Pan Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int J Mol Sci 2023; 24:ijms24119205. [PMID: 37298157 DOI: 10.3390/ijms24119205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Granulosa cells are essential for follicle initiation and development, and their abnormal function or apoptosis is a crucial factor leading to follicular atresia. A state of oxidative stress occurs when the balance between the production of reactive oxygen species and the regulation of the antioxidant system is disturbed. Oxidative stress is one of the most important causes of the abnormal function and apoptosis of granulosa cells. Oxidative stress in granulosa cells causes female reproductive system diseases, such as polycystic ovary syndrome and premature ovarian failure. In recent years, studies have confirmed that the mechanism of oxidative stress in granulosa cells is closely linked to the PI3K-AKT signaling pathway, MAPK signaling pathway, FOXO axis, Nrf2 pathway, NF-κB signaling pathway, and mitophagy. It has been found that drugs such as sulforaphane, Periplaneta americana peptide, and resveratrol can mitigate the functional damage caused by oxidative stress on granulosa cells. This paper reviews some of the mechanisms involved in oxidative stress in granulosa cells and describes the mechanisms underlying the pharmacological treatment of oxidative stress in granulosa cells.
Collapse
Affiliation(s)
- Siheng Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yunbing Jia
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shirui Meng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiran Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Yang
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- College of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Li C, Wang X, Qiao X, Fan L, Zhu H, Chen Y, He Y, Zhang Z. 5,7-Dihydroxy-4-methylcoumarin modulates the JNK/FoxO1 signaling pathway to attenuate cisplatin-induced ototoxicity by suppressing oxidative stress and apoptosis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119437. [PMID: 36754151 DOI: 10.1016/j.bbamcr.2023.119437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
5,7-Dihydroxy-4-methylcoumarin (D4M) is attributed to free radical scavenging effects, with wide application for anti-oxidation. This work aimed to assess D4M's impact on cisplatin-induced ototoxicity. The cell viability was estimated with CCK-8 assay. Apoptosis was detected by the Annexin V-FITC and PI assay. The reactive oxygen species (ROS) level was determined by MitoSOX-Red and CellROX-Green probes. Mitochondrial membrane potential was analyzed with TMRM staining. Immunofluorescence was utilized for hair cells and spiral ganglion neuron detection. Apoptosis-associated proteins were assessed by cleaved caspase-3 and TUNEL staining. These results showed that D4M pretreatment protected hair cells from cisplatin-induced damage, increased cell viability, and decreased apoptosis in House Ear Institute-Organ of Corti1 (HEI-OC1) cells and neonatal mouse cochlear explants. D4M significantly inhibited cisplatin-induced mitochondrial apoptosis and reduced ROS accumulation. In addition, the protective effect of D4M on cisplatin-induced ototoxicity was also confirmed in cochlear hair cells and spiral ganglion neurons in neonatal mice. Mechanistic studies showed that D4M markedly downregulated p-JNK and elevated the expression ratio of p-FoxO1/FoxO1, thereby reducing cisplatin-induced caspase-dependent apoptosis. Meanwhile, D4M-related protection of HEI-OC1 cells was significantly blunted by JNK signaling induction with anisomycin. This study supports the possibility that D4M may be used as a new compound to prevent cisplatin-related hearing loss.
Collapse
Affiliation(s)
- Cai Li
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue Wang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiangyun Qiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
| | - Li Fan
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huanhuan Zhu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yutao Chen
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Li Y, Wang R, Li Y, Sun G, Mo H. Protective effects of tree peony seed protein hydrolysate on Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos. FISH & SHELLFISH IMMUNOLOGY 2022; 126:292-302. [PMID: 35654387 DOI: 10.1016/j.fsi.2022.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to investigate protective effects of tree peony seed protein hydrolysate by Alcalase (AL-TPSPH) on oxidative damage, inflammation and apoptosis using Cd-induced zebrafish embryos. Zebrafish embryos were treated with either Cd (2 μg/L) or AL-TPSPH (25, 50 and 75 μg/mL) alone or in combination of both from 4 to 144 h post fertilization (hpf). The effects of these treatments on developments, antioxidant parameters and mRNA expression of genes related to oxidative damage, inflammation and apoptosis were examined. The results showed that co-treatment with Cd and AL-TPSPH significantly increased hatching and survival rates and decreased malformation rates of zebrafish embryos compared with Cd treatment alone group (P < 0.05). Cd-induced increase of MDA content, decreases of T-AOC content, GSH/GSSG ratio and activities of SOD, CAT and GPx in zebrafish embryos were modified upon treatment with AL-TPSPH. AL-TPSPH treatment significantly suppressed Cd-induced down-regulations of the antioxidant gene expressions (Mn-sod, Cat and GPx1a) in zebrafish embryos (P < 0.05). AL-TPSPH also prevented Cd-induced up-regulations of pro-inflammatory cytokine (TNF-α, IL-1β and IFN-γ) expressions. Moreover, AL-TPSPH inhibited Cd-induced up-regulations of pro-apoptotic genes (C-jun, Caspase-3 and Caspase-9) in zebrafish embryos. Collectively, these results indicated that AL-TPSPH could reduce Cd-induced oxidative damage, inflammation and apoptosis in zebrafish embryos, suggesting its future applications as functional food or pharmaceutical ingredient.
Collapse
Affiliation(s)
- Yan Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Ruixue Wang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China
| | - Yingqiu Li
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Guijin Sun
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan, 250353, China.
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 453003, China
| |
Collapse
|