1
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
2
|
Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol (Lausanne) 2023; 14:1280847. [PMID: 38027209 PMCID: PMC10647927 DOI: 10.3389/fendo.2023.1280847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.
Collapse
Affiliation(s)
- Desmond A. R. Tutt
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Gizem Guven-Ates
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rob Simmons
- Paragon Veterinary Group, Carlisle, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Alan H. Handyside
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Marc-André Sirard
- CRDSI, Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, QC, Canada
| | - Richard D. Emes
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
3
|
Velazquez MA. Nutritional Strategies to Promote Bovine Oocyte Quality for In Vitro Embryo Production: Do They Really Work? Vet Sci 2023; 10:604. [PMID: 37888556 PMCID: PMC10611302 DOI: 10.3390/vetsci10100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
The ability of bovine oocytes to reach the blastocyst stage (i.e., embryo with around 150 cells in cattle) in vitro can be affected by technical (e.g., culture medium used) and physiological factors in oocyte donors (e.g., age, breed). As such, the nutritional status of oocyte donors plays a significant role in the efficiency of in vitro embryo production (IVEP), and several nutritional strategies have been investigated in cattle subjected to ovum pick-up (OPU). However, there is no clear consensus on the reliability of nutritional schemes to improve IVEP in cattle. Available evidence suggests that a moderate body condition score (i.e., 3 in a 1-5 scale) in cattle is compatible with a metabolic microenvironment in ovarian follicles that will promote embryo formation in vitro. The usefulness of fatty acid and micronutrient supplementation to improve IVEP in cattle is debatable with the current information available. Overall, the supply of maintenance nutritional requirements according to developmental and productive stage seems to be enough to provide bovine oocyte donors with a good chance of producing embryos in vitro. Future nutrition research in cattle using OPU-IVEP models needs to consider animal well-being aspects (i.e., stress caused by handling and sampling), which could affect the results.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|