1
|
SUZUKI K. Thrombomodulin: A key regulator of intravascular blood coagulation, fibrinolysis, and inflammation, and a treatment for disseminated intravascular coagulation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:75-97. [PMID: 39694492 PMCID: PMC11893221 DOI: 10.2183/pjab.101.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Thrombomodulin (TM) is an important regulator of intravascular blood coagulation, fibrinolysis, and inflammation. TM inhibits the procoagulant and proinflammatory activities of thrombin and promotes the thrombin-induced activation of protein C (PC) bound to the endothelial PC receptor (EPCR). Activated PC (APC) inactivates coagulation factors Va and VIIIa, thereby inhibiting blood clotting. APC bound to EPCR exerts anti-inflammatory and cytoprotective effects on vascular endothelial cells. TM promotes the activation of thrombin-activatable fibrinolysis inhibitor, and also protects cells in blood vessels from inflammation caused by pathogen-associated and damaged cell-associated molecules. Excessive anticoagulant, fibrinolytic, anti-inflammatory, and tissue regenerative effects in the TM-PC pathway are controlled by PC inhibitor. A recombinant TM drug (TM), a soluble form of natural TM developed from the cloned human TM gene, has been evaluated for efficacy in many clinical trials and approved as a treatment for disseminated intravascular coagulation (DIC) caused by diseases such as sepsis, solid tumors, hematopoietic tumors, and trauma. It is currently widely used to treat DIC in Japan.
Collapse
Affiliation(s)
- Koji SUZUKI
- Professor, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Vice President for Research, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Professor Emeritus, Mie University, Tsu, Mie, Japan
| |
Collapse
|
2
|
Cirovic A, Djuric M, Milovanovic P. Deficiency of protein C or protein S as a possible cause of osteoporosis. Endocrine 2024; 85:558-565. [PMID: 38483687 DOI: 10.1007/s12020-024-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024]
Abstract
Proteins C and S are vitamin K-dependent anticoagulative factors that also exert a significant influence on bone quality. Clinical studies have linked the deficiency of proteins C and S to lower bone mineral density and the onset of femoral head osteonecrosis in children. Rare foundational studies analyzing this topic have demonstrated that activated protein C, upon binding to the endothelial protein C receptor expressed on the surface of osteoblasts, promotes osteoblast proliferation. It is also established that proteins C and S play crucial roles in proper collagen synthesis and in maintaining the number of osteoclasts and blood vessels. However, the association between protein C and/or S deficiency and the gradual onset of osteoporosis remains largely uninvestigated. Calculations based on data from peer-reviewed journals suggest that approximately one in every 10 individuals may develop osteoporosis due to congenital protein C or S deficiency. Moreover, when secondary causes of protein C and S deficiency are also considered, the proportion likely further increases. In this paper, we discuss the pathophysiological background of the potential relationship between protein C and S deficiency and the genesis of osteoporosis.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
3
|
Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S, Zheng XL. PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Triggers Vascular Smooth Muscle Cell Senescence and Apoptosis: Implication of Its Direct Role in Degenerative Vascular Disease. Arterioscler Thromb Vasc Biol 2021; 42:67-86. [PMID: 34809446 DOI: 10.1161/atvbaha.121.316902] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE PCSK9 (proprotein convertase subtilisin/kexin type 9) plays a critical role in cholesterol metabolism via the PCSK9-LDLR (low-density lipoprotein receptor) axis in the liver; however, evidence indicates that PCSK9 directly contributes to the pathogenesis of various diseases through mechanisms independent of its LDL-cholesterol regulation. The objective of this study was to determine how PCSK9 directly acts on vascular smooth muscle cells (SMCs), contributing to degenerative vascular disease. Approach and Results: We first examined the effects of PCSK9 on cultured human aortic SMCs. Overexpression of PCSK9 downregulated the expression of ApoER2 (apolipoprotein E receptor 2), a known target of PCSK9. Treatment with soluble recombinant human ApoER2 or the DNA synthesis inhibitor, hydroxyurea, inhibited PCSK9-induced polyploidization and other cellular responses of human SMCs. Treatment with antibodies against ApoER2 resulted in similar effects to those observed with PCSK9 overexpression. Inducible, SMC-specific knockout of Pcsk9 accelerated neointima formation in mouse carotid arteries and reduced age-related arterial stiffness. PCSK9 was expressed in SMCs of human atherosclerotic lesions and abundant in the "shoulder" regions of vulnerable atherosclerotic plaques. PCSK9 was also expressed in SMCs of abdominal aortic aneurysm, which was inversely related to the expression of smooth muscle α-actin. CONCLUSIONS Our findings demonstrate that PCSK9 inhibits proliferation and induces polyploidization, senescence, and apoptosis, which may be relevant to various degenerative vascular diseases.
Collapse
Affiliation(s)
- Yanan Guo
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Zhihan Tang
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Binjie Yan
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Hao Yin
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Now with Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada (H.Y.)
| | - Shi Tai
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yuting Cui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng).,Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan (Z.T., B.Y., J.P., Y.C.)
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Darrell Belke
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (Y. Guo, S.T., S.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology (Y. Guo, Z.T., B.Y., H.Y., Y. Gui, X.-L. Zheng)
| |
Collapse
|
4
|
Gao Y, Chen Y, Wang L, Li C, Ge W. Serum-derived extracellular vesicles inhibit osteoclastogenesis in active-phase patients with SAPHO syndrome. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006966. [PMID: 33948126 PMCID: PMC8053764 DOI: 10.1177/1759720x211006966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: Synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare chronic inflammatory disorder and the underlying pathogenesis is unclear. In this study, 88 SAPHO patients and 118 healthy controls were recruited to investigate the role of serum-derived extracellular vesicles (SEVs) in SAPHO syndrome. Methods: Quantitative proteomics was applied for SEVs proteome identification, and ELISA and Western blotting was performed to verify the results of mass spectrum data. In vitro osteoclastogenesis and osteogenesis assay was used to confirm the effects of SEVs on bone metabolism. Results: Tandem mass tagging-based quantitative proteomic analysis of SAPHO SEVs revealed differential expressed proteins involved in bone metabolism. Of these, serum amyloid A-1 (SAA1) and C-reactive protein (CRP) were upregulated. Higher SAA1 levels in SAPHO patients were confirmed by ELISA. In addition, SAA1 levels were positively correlated with CRP, an inflammatory marker related to the condition of patients. In vitro celluler studies confirmed that SAPHO SEVs inhibited osteoclastogenesis in patients mainly in the active phase of the disease. Further analysis demonstrated that Nucleolin was upregulated in osteoclasts of active-phase patients under SAPHO SEVs stimulation. Conclusion: In this study, we identified SAA1 as an additional inflammation marker that can potentially assist the diagnosis of SAPHO syndrome, and speculated that Nucleolin is a key regulator of osteoclastogenesis in active-phase patients.
Collapse
Affiliation(s)
- Yanpan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lun Wang
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Beijing 100730, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, No. 5 Dong Dan San Tiao, Beijing, 100005, China
| |
Collapse
|
5
|
Grémare A, Aussel A, Bareille R, Paiva Dos Santos B, Amédée J, Thébaud NB, Le Nihouannen D. A Unique Triculture Model to Study Osteoblasts, Osteoclasts, and Endothelial Cells. Tissue Eng Part C Methods 2020; 25:421-432. [PMID: 31169074 DOI: 10.1089/ten.tec.2018.0301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT In this article, we first developed a new medium to culture together primary human osteoblastic, osteoclastic, and endothelial cells (ECs) chosen to represent the three major bone cell tissues. Indeed, no study has been conducted on primary human cells and on the phenotype/activity retention of these three primary human cell types. Thus, we established an original triculture model with osteoblastic, osteoclastic, and ECs, where not only both cell phenotype and cell activity were maintained but also cell culture homeostasis. These promising results will permit further investigations to create in vitro conditions to mimic the bone microenvironment and analyze cell interactions in ex vivo studies.
Collapse
Affiliation(s)
- Agathe Grémare
- 1Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Audrey Aussel
- 1Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Reine Bareille
- 2Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Bruno Paiva Dos Santos
- 2Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Joelle Amédée
- 2Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| | - Noélie B Thébaud
- 1Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, CHU Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Damien Le Nihouannen
- 2Université de Bordeaux, INSERM, Tissue Bioengineering, U1026, F-33076, Bordeaux, France
| |
Collapse
|
6
|
Jastrzebski S, Kalinowski J, Mun S, Shin B, Adapala NS, Jacome-Galarza CE, Mirza F, Aguila HL, Drissi H, Sanjay A, Canalis E, Lee SK, Lorenzo JA. Protease-Activated Receptor 1 Deletion Causes Enhanced Osteoclastogenesis in Response to Inflammatory Signals through a Notch2-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2019; 203:105-116. [PMID: 31109956 DOI: 10.4049/jimmunol.1801032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.
Collapse
Affiliation(s)
| | | | - Sehwan Mun
- Center on Aging, UConn Health, Farmington, CT 06030
| | - Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT 06030
| | | | | | - Faryal Mirza
- Department of Medicine, UConn Health, Farmington, CT 06030
| | | | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329
| | - Archana Sanjay
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| | - Ernesto Canalis
- Department of Medicine, UConn Health, Farmington, CT 06030.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| | | | - Joseph A Lorenzo
- Department of Medicine, UConn Health, Farmington, CT 06030; .,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030
| |
Collapse
|
7
|
Activated Protein C in Cutaneous Wound Healing: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20040903. [PMID: 30791425 PMCID: PMC6412604 DOI: 10.3390/ijms20040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Independent of its well-known anticoagulation effects, activated protein C (APC) exhibits pleiotropic cytoprotective properties. These include anti-inflammatory actions, anti-apoptosis, and endothelial and epithelial barrier stabilisation. Such beneficial effects have made APC an attractive target of research in a plethora of physiological and pathophysiological processes. Of note, the past decade or so has seen the emergence of its roles in cutaneous wound healing-a complex process involving inflammation, proliferation and remodelling. This review will highlight APC's functions and mechanisms, and detail its pre-clinical and clinical studies on cutaneous wound healing.
Collapse
|