1
|
Zhang M, He K, Ye D, Zhang Q, Zhang Z. To Investigate Whether Hematocrit Affects Thromboelastography Parameters. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8877321. [PMID: 35965617 PMCID: PMC9357726 DOI: 10.1155/2022/8877321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
Background Thromboelastogram (TEG) is an experiment to detect coagulation function with whole blood. Red blood cell (RBC) is the most abundant component of blood. Whether RBC has an impact on the results of thromboelastogram? Study Design and Methods. The correlation between hematocrit (HCT) and TEG was analyzed. 17 samples were reconstituted with different HCT. They were tested separately. Correction tests were performed on 17 samples from patients with anemia. HCT was corrected to 0.40 in female and 0.45 in males. The correction formula was determined according to the experimental correction. Results HCT was negatively correlated with TEG parameters. As HCT increased, CI and angle decreased (P < 0.05, P < 0.001) and K increased (P < 0.001) in reconstituted samples. In the correction test, the angle measured value was 69.48 ± 4.98 and corrected value was 62.48 ± 6.25, MA measured value was 61.44 ± 7.10 and corrected value was 55.94 ± 7.12, K measured value was 1.45 ± 0.48 and corrected value was 2.11 ± 0.79, and CI measured value was 1.07 ± 1.67 and corrected value was -0.45 ± 1.64. There was a significant difference. The correction formulas of anemia were derived from the experimental correction results. K Correction value = (0.7903∗ A 2 - 2.1803A + 2.8268)∗ K Measured value; Tan angleCorrection value = Tan angleMeasured value/(0.6596∗ A 2 - 1.7478A + 2.4608); MACorrection value = MAMeasured value/(0.1853ln (A) + 1.0197); CICorrection value = -0.6516RMeasured value - 0.3772K Correction value + 0.1224MACorrection value + 0.0759angleCorrection value - 7.7922. Conclusion HCT has a negative impact on TEG parameters. Coagulation state of anemia patients is overestimated by TEG. The test results of anemia patients need to be corrected whether through the experimental correction or the formula correction.
Collapse
Affiliation(s)
- Min Zhang
- Department of Blood Transfusion, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Keyu He
- Department of Blood Transfusion, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Dong Ye
- Department of Blood Transfusion, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiang Zhang
- Department of Blood Transfusion, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengkang Zhang
- Department of Blood Transfusion, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Abstract
During sepsis, an initial prothrombotic shift takes place, in which coagulatory acute-phase proteins are increased, while anticoagulatory factors and platelet count decrease. Further on, the fibrinolytic system becomes impaired, which contributes to disease severity. At a later stage in sepsis, coagulation factors may become depleted, and sepsis patients may shift into a hypo-coagulable state with an increased bleeding risk. During the pro-coagulatory shift, critically ill patients have an increased thrombosis risk that ranges from developing micro-thromboses that impair organ function to life-threatening thromboembolic events. Here, thrombin plays a key role in coagulation as well as in inflammation. For thromboprophylaxis, low molecular weight heparins (LMWH) and unfractionated heparins (UFHs) are recommended. Nevertheless, there are conditions such as heparin resistance or heparin-induced thrombocytopenia (HIT), wherein heparin becomes ineffective or even puts the patient at an increased prothrombotic risk. In these cases, argatroban, a direct thrombin inhibitor (DTI), might be a potential alternative anticoagulatory strategy. Yet, caution is advised with regard to dosing of argatroban especially in sepsis. Therefore, the starting dose of argatroban is recommended to be low and should be titrated to the targeted anticoagulation level and be closely monitored in the further course of treatment. The authors of this review recommend using DTIs such as argatroban as an alternative anticoagulant in critically ill patients suffering from sepsis or COVID-19 with suspected or confirmed HIT, HIT-like conditions, impaired fibrinolysis, in patients on extracorporeal circuits and patients with heparin resistance, when closely monitored.
Collapse
|
3
|
Granja T, Magunia H, Schüssel P, Fischer C, Prüfer T, Schibilsky D, Serna-Higuita L, Wendel HP, Schlensak C, Häberle H, Rosenberger P, Straub A. Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction. Platelets 2020; 33:132-140. [PMID: 33347335 DOI: 10.1080/09537104.2020.1859101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Blood flow through left ventricular assist devices (LVAD) may induce activation and dysfunction of platelets. Dysfunctional platelets cause coagulation disturbances and form platelet-neutrophil conjugates (PNC), which contribute to inflammatory tissue damage. This prospective observational cohort study investigated patients, who underwent implantation of a LVAD (either HeartMate II (HM II) (n = 7) or HeartMate 3 (HM 3) (n = 6)) and as control patients undergoing coronary artery bypass grafting (CABG) and/or aortic valve replacement (AVR) (n = 10). We performed platelet and leukocyte flow cytometry, analysis of platelet activation markers, and platelet aggregometry. Platelet CD42b expression was reduced at baseline and perioperatively in HM II/3 compared to CABG/AVR patients. After surgery the platelet activation marker β-thromboglobulin and platelet microparticles increased in all groups while platelet aggregation decreased. Platelet aggregation was more significantly impaired in LVAD compared to CABG/AVR patients. PNC were higher in HM II compared to HM 3 patients. We conclude that LVAD implantation is associated with platelet dysfunction and proinflammatory platelet-leukocyte binding. These changes are less pronounced in patients treated with the newer generation LVAD HM 3. Future research should identify device-specific LVAD features, which are associated with the least amount of platelet activation to further improve LVAD therapy.
Collapse
Affiliation(s)
- Tiago Granja
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Harry Magunia
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Patricia Schüssel
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany.,Dept. of Urology, Caritas Hospital, Bad Mergentheim, Germany
| | - Claudius Fischer
- Dept. of Anesthesiology and Intensive Care Medicine, MediClin Herzzentrum, Lahr/Baden, Germany
| | - Thomas Prüfer
- Dept. of Anesthesiology and Intensive Care Medicine, Klinikum Bayreuth, Germany
| | - David Schibilsky
- University Heart Center Freiburg / Bad Krozingen, Faculty of Medicine, University of Freiburg, Germany.,Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Germany
| | - Lina Serna-Higuita
- Dept. of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen Germany
| | - Hans Peter Wendel
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| | - Christian Schlensak
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| | - Helene Häberle
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Peter Rosenberger
- Dept. of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Andreas Straub
- Dept. of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, St. Elisabethen Klinikum, Ravensburg, Germany
| |
Collapse
|