1
|
Cheng Y, Zou J, He M, Hou X, Wang H, Xu J, Yuan Z, Lan M, Yang Y, Chen X, Gao F. Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy. J Control Release 2024; 367:167-183. [PMID: 37562556 DOI: 10.1016/j.jconrel.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Hou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajun Xu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Yang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Gholami A, Minai-Tehrani D, Mahdizadeh SJ, Saenz-Mendez P, Eriksson LA. Structural Insights into Pseudomonas aeruginosa Exotoxin A-Elongation Factor 2 Interactions: A Molecular Dynamics Study. J Chem Inf Model 2023; 63:1578-1591. [PMID: 36802593 PMCID: PMC10015456 DOI: 10.1021/acs.jcim.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Exotoxin A (ETA) is an extracellular secreted toxin and a single-chain polypeptide with A and B fragments that is produced by Pseudomonas aeruginosa. It catalyzes the ADP-ribosylation of a post-translationally modified histidine (diphthamide) on eukaryotic elongation factor 2 (eEF2), which results in the inactivation of the latter and the inhibition of protein biosynthesis. Studies show that the imidazole ring of diphthamide plays an important role in the ADP-ribosylation catalyzed by the toxin. In this work, we employ different in silico molecular dynamics (MD) simulation approaches to understand the role of diphthamide versus unmodified histidine in eEF2 on the interaction with ETA. Crystal structures of the eEF2-ETA complexes with three different ligands NAD+, ADP-ribose, and βTAD were selected and compared in the diphthamide and histidine containing systems. The study shows that NAD+ bound to ETA remains very stable in comparison with other ligands, enabling the transfer of ADP-ribose to the N3 atom of the diphthamide imidazole ring in eEF2 during ribosylation. We also show that unmodified histidine in eEF2 has a negative impact on ETA binding and is not a suitable target for the attachment of ADP-ribose. Analyzing of radius of gyration and COM distances for NAD+, βTAD, and ADP-ribose complexes revealed that unmodified His affects the structure and destabilizes the complex with all different ligands throughout the MD simulations.
Collapse
Affiliation(s)
- Asma Gholami
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden.,Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Dariush Minai-Tehrani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Sayyed Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| | - Patricia Saenz-Mendez
- Department of Engineering and Chemical Sciences, Karlstad University, 651 88 Karlstad, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden
| |
Collapse
|
3
|
In Silico Identification of 1-DTP Inhibitors of Corynebacterium diphtheriae Using Phytochemicals from Andrographis paniculata. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020909. [PMID: 36677967 PMCID: PMC9862189 DOI: 10.3390/molecules28020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.
Collapse
|
4
|
An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol Cell 2022; 82:3484-3498.e11. [PMID: 36070765 DOI: 10.1016/j.molcel.2022.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.
Collapse
|
5
|
Dmitriev SE, Vladimirov DO, Lashkevich KA. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. BIOCHEMISTRY (MOSCOW) 2021; 85:1389-1421. [PMID: 33280581 PMCID: PMC7689648 DOI: 10.1134/s0006297920110097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic ribosome and cap-dependent translation are attractive targets in the antitumor, antiviral, anti-inflammatory, and antiparasitic therapies. Currently, a broad array of small-molecule drugs is known that specifically inhibit protein synthesis in eukaryotic cells. Many of them are well-studied ribosome-targeting antibiotics that block translocation, the peptidyl transferase center or the polypeptide exit tunnel, modulate the binding of translation machinery components to the ribosome, and induce miscoding, premature termination or stop codon readthrough. Such inhibitors are widely used as anticancer, anthelmintic and antifungal agents in medicine, as well as fungicides in agriculture. Chemicals that affect the accuracy of stop codon recognition are promising drugs for the nonsense suppression therapy of hereditary diseases and restoration of tumor suppressor function in cancer cells. Other compounds inhibit aminoacyl-tRNA synthetases, translation factors, and components of translation-associated signaling pathways, including mTOR kinase. Some of them have antidepressant, immunosuppressive and geroprotective properties. Translation inhibitors are also used in research for gene expression analysis by ribosome profiling, as well as in cell culture techniques. In this article, we review well-studied and less known inhibitors of eukaryotic protein synthesis (with the exception of mitochondrial and plastid translation) classified by their targets and briefly describe the action mechanisms of these compounds. We also present a continuously updated database (http://eupsic.belozersky.msu.ru/) that currently contains information on 370 inhibitors of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- S E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - D O Vladimirov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - K A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
The N-terminus of Paenibacillus larvae C3larvinA modulates catalytic efficiency. Biosci Rep 2021; 41:227200. [PMID: 33289829 PMCID: PMC7789906 DOI: 10.1042/bsr20203727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
C3larvinA was recently described as a mono-ADP-ribosyltransferase (mART) toxin from the enterobacterial repetitive intergenic consensus (ERIC) III genotype of the agricultural pathogen, Paenibacillus larvae. It was shown to be the full-length, functional version of the previously described C3larvintrunc toxin, due to a 33-residue extension of the N-terminus of the protein. In the present study, a series of deletions and substitutions were made to the N-terminus of C3larvinA to assess the contribution of the α1-helix to toxin structure and function. Catalytic characterization of these variants identified Asp23 and Ala31 residues as supportive to enzymatic function. A third residue, Lys36, was also found to contribute to the catalytic activity of the enzyme. Analysis of the C3larvinA homology model revealed that these three residues were participating in a series of interactions to properly orient both the Q-X-E and S-T-S motifs. Ala31 and Lys36 were found to associate with a structural network of residues previously identified in silico, whereas Asp23 forms novel interactions not previously described. At last, the membrane translocation activity into host target cells of each variant was assessed, highlighting a possible relationship between protein dipole and target cell entry.
Collapse
|
7
|
Lugo MR, Merrill AR. Development of Anti-Virulence Therapeutics against Mono-ADP-Ribosyltransferase Toxins. Toxins (Basel) 2020; 13:toxins13010016. [PMID: 33375750 PMCID: PMC7824265 DOI: 10.3390/toxins13010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Mono-ADP-ribosyltransferase toxins are often key virulence factors produced by pathogenic bacteria as tools to compromise the target host cell. These toxins are enzymes that use host cellular NAD+ as the substrate to modify a critical macromolecule target in the host cell machinery. This post-translational modification of the target macromolecule (usually protein or DNA) acts like a switch to turn the target activity on or off resulting in impairment of a critical process or pathway in the host. One approach to stymie bacterial pathogens is to curtail the toxic action of these factors by designing small molecules that bind tightly to the enzyme active site and prevent catalytic function. The inactivation of these toxins/enzymes is targeted for the site of action within the host cell and small molecule therapeutics can function as anti-virulence agents by disarming the pathogen. This represents an alternative strategy to antibiotic therapy with the potential as a paradigm shift that may circumvent multi-drug resistance in the offending microbe. In this review, work that has been accomplished during the past two decades on this approach to develop anti-virulence compounds against mono-ADP-ribosyltransferase toxins will be discussed.
Collapse
|
8
|
Chutshela A, Masamba P, Oyinloye BE, Kappo AP. Molecular Context of ADP-ribosylation in Schistosomes for Drug Discovery and Vaccine Development. Curr Drug Discov Technol 2020; 18:473-484. [PMID: 32767945 DOI: 10.2174/1570163817666200806170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides. It is crucial in biological processes such as DNA repair, apoptosis, carbohydrate metabolism and catabolism. In the absence of a vaccine against schistosomiasis, this becomes a promising pathway in the identification of drug targets against various forms of this infection. The tegument of the worm is an encouraging immunogenic target for anti-schistosomal vaccine development. Vaccinology, molecular modeling and target-based drug discovery strategies have been used for years in drug discovery and for vaccine development. In this paper, we outline ADP-ribosylation and other different approaches to drug discovery and vaccine development against schistosomiasis.
Collapse
Affiliation(s)
- Amandla Chutshela
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park 2006, South Africa
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park 2006, South Africa
| |
Collapse
|
9
|
Barik S, Mandal NC. Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N-cI - Prophages. Int J Mol Sci 2020; 21:ijms21051667. [PMID: 32121308 PMCID: PMC7084815 DOI: 10.3390/ijms21051667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/04/2022] Open
Abstract
The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN-cI-), at high multiplicities of 50 or more, it forms polylysogens that contain 20–30 copies of the λN-cI- genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent “conversion” to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN-cI- genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies.
Collapse
|
10
|
Turner M, Tremblay O, Heney K, Lugo M, Ebeling J, Genersch E, Merrill A. Characterization of C3larvinA, a novel RhoA-targeting ADP-ribosyltransferase toxin produced by the honey bee pathogen, Paenibacillus larvae. Biosci Rep 2020; 40:BSR20193405. [PMID: 31844879 PMCID: PMC6954368 DOI: 10.1042/bsr20193405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
C3larvinA is a putative virulence factor produced by Paenibacillus larvae enterobacterial-repetitive-intergenic-consensus (ERIC) III/IV (strain 11-8051). Biochemical, functional and structural analyses of C3larvinA revealed that it belongs to the C3-like mono-ADP-ribosylating toxin subgroup. Mammalian RhoA was the target substrate for its transferase activity suggesting that it may be the biological target of C3larvinA. The kinetic parameters of the NAD+ substrate for the transferase (KM = 75 ± 10 µM) and glycohydrolase (GH) (KM = 107 ± 20 µM) reactions were typical for a C3-like bacterial toxin, including the Plx2A virulence factor from Paenibacillus larvae ERIC I. Upon cytoplasmic expression in yeast, C3larvinA caused a growth-defective phenotype indicating that it is an active C3-like toxin and is cytotoxic to eukaryotic cells. The catalytic variant of the Q187-X-E189 motif in C3larvinA showed no cytotoxicity toward yeast confirming that the cytotoxicity of this factor depends on its enzymatic activity. A homology consensus model of C3larvinA with NAD+ substrate was built on the structure of Plx2A, provided additional confirmation that C3larvinA is a member of the C3-like mono-ADP-ribosylating toxin subgroup. A homology model of C3larvinA with NADH and RhoA was built on the structure of the C3cer-NADH-RhoA complex which provided further evidence that C3larvinA is a C3-like toxin that shares an identical catalytic mechanism with C3cer from Bacillus cereus. C3larvinA induced actin cytoskeleton reorganization in murine macrophages, whereas in insect cells, vacuolization and bi-nucleated cells were observed. These cellular effects are consistent with C3larvinA disrupting RhoA function by covalent modification that is shared among C3-like bacterial toxins.
Collapse
Affiliation(s)
- Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Olivier Tremblay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kayla A. Heney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Miguel R. Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf 16540, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf 16540, Germany
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin 14163, Germany
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Tak U, Vlach J, Garza-Garcia A, William D, Danilchanka O, de Carvalho LPS, Saad JS, Niederweis M. The tuberculosis necrotizing toxin is an NAD + and NADP + glycohydrolase with distinct enzymatic properties. J Biol Chem 2019; 294:3024-3036. [PMID: 30593509 PMCID: PMC6398120 DOI: 10.1074/jbc.ra118.005832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Upon host infection, Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD+ in the absence of any exogenous cofactor, thus classifying it as a β-NAD+ glycohydrolase. However, TNT lacks sequence similarity with other NAD+ hydrolyzing enzymes and lacks the essential motifs involved in NAD+ binding and hydrolysis by these enzymes. In this study, we used NMR to examine the enzymatic activity of TNT and found that TNT hydrolyzes NADP+ as fast as NAD+ but does not cleave the corresponding reduced dinucleotides. This activity of TNT was not inhibited by ADP-ribose or nicotinamide, indicating low affinity of TNT for these reaction products. A selection assay for nontoxic TNT variants in Escherichia coli identified four of six residues in the predicted NAD+-binding pocket and four glycine residues that form a cradle directly below the NAD+-binding site, a conserved feature in the TNT protein family. Site-directed mutagenesis of residues near the predicted NAD+-binding site revealed that Phe727, Arg757, and Arg780 are essential for NAD+ hydrolysis by TNT. These results identify the NAD+-binding site of TNT. Our findings also show that TNT is an NAD+ glycohydrolase with properties distinct from those of other bacterial glycohydrolases. Because many of these residues are conserved within the TNT family, our findings provide insights into understanding the function of the >300 TNT homologs.
Collapse
Affiliation(s)
- Uday Tak
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Doreen William
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Olga Danilchanka
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Jamil S Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Michael Niederweis
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| |
Collapse
|
12
|
Mondal S, Hsiao K, Goueli SA. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions. Assay Drug Dev Technol 2018; 15:330-341. [PMID: 29120675 DOI: 10.1089/adt.2017.815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD+]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD+ and enzymes that use NAD+ like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Collapse
Affiliation(s)
- Subhanjan Mondal
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Kevin Hsiao
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Said A Goueli
- 1 Research and Development , Promega Corporation, Madison, Wisconsin.,2 Department of Pathology and Lab Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
13
|
Characterization of the catalytic signature of Scabin toxin, a DNA-targeting ADP-ribosyltransferase. Biochem J 2018; 475:225-245. [PMID: 29208763 DOI: 10.1042/bcj20170818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
Scabin was previously identified as a novel DNA-targeting mono-ADP-ribosyltransferase (mART) toxin from the plant pathogen 87.22 strain of Streptomyces scabies Scabin is a member of the Pierisin-like subgroup of mART toxins, since it targets DNA. An in-depth characterization of both the glycohydrolase and transferase enzymatic activities of Scabin was conducted. Several protein variants were developed based on an initial Scabin·DNA molecular model. Consequently, three residues were deemed important for DNA-binding and transferase activity. Trp128 and Trp155 are important for binding the DNA substrate and participate in the reaction mechanism, whereas Tyr129 was shown to be important only for DNA binding, but was not involved in the reaction mechanism. Trp128 and Trp155 are both conserved within the Pierisin-like toxins, whereas Tyr129 is a unique substitution within the group. Scabin showed substrate specificity toward double-stranded DNA containing a single-base overhang, as a model for single-stranded nicked DNA. The crystal structure of Scabin bound to NADH - a competitive inhibitor of Scabin - was determined, providing important insights into the active-site structure and Michaelis-Menten complex of the enzyme. Based on these results, a novel DNA-binding motif is proposed for Scabin with substrate and the key residues that may participate in the Scabin·NAD(+) complex are highlighted.
Collapse
|
14
|
Ebeling J, Fünfhaus A, Knispel H, Krska D, Ravulapalli R, Heney KA, Lugo MR, Merrill AR, Genersch E. Characterization of the toxin Plx2A, a RhoA-targeting ADP-ribosyltransferase produced by the honey bee pathogenPaenibacillus larvae. Environ Microbiol 2017; 19:5100-5116. [DOI: 10.1111/1462-2920.13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Julia Ebeling
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Anne Fünfhaus
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Henriette Knispel
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Daniel Krska
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | | | - Kayla A. Heney
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - Miguel R. Lugo
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
- Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen; Freie Universität Berlin; 14163 Berlin Germany
| |
Collapse
|
15
|
Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
|
16
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017. [PMID: 29170526 DOI: 10.1038/s41598-017-16286-5] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.,Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
17
|
Lu X, Lu J, Liao B, Li X, Qian X, Li K. Driver pattern identification over the gene co-expression of drug response in ovarian cancer by integrating high throughput genomics data. Sci Rep 2017; 7:16188. [PMID: 29170526 PMCID: PMC5700962 DOI: 10.1038/s41598-017-16286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Multiple types of high throughput genomics data create a potential opportunity to identify driver patterns in ovarian cancer, which will acquire some novel and clinical biomarkers for appropriate diagnosis and treatment to cancer patients. To identify candidate driver genes and the corresponding driving patterns for resistant and sensitive tumors from the heterogeneous data, we combined gene co-expression modules with mutation modulators and proposed the method to identify driver patterns. Firstly, co-expression network analysis is applied to explore gene modules for gene expression profiles through weighted correlation network analysis (WGCNA). Secondly, mutation matrix is generated by integrating the CNV data and somatic mutation data, and a mutation network is constructed from the mutation matrix. Thirdly, candidate modulators are selected from significant genes by clustering vertexs of the mutation network. Finally, a regression tree model is utilized for module network learning, in which the obtained gene modules and candidate modulators are trained for the driving pattern identification and modulators regulatory exploration. Many identified candidate modulators are known to be involved in biological meaningful processes associated with ovarian cancer, such as CCL11, CCL16, CCL18, CCL23, CCL8, CCL5, APOB, BRCA1, SLC18A1, FGF22, GADD45B, GNA15, GNA11, and so on.
Collapse
Affiliation(s)
- Xinguo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China.
| | - Jibo Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Bo Liao
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xing Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Xin Qian
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
| | - Keqin Li
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Nan Rd., Changsha, 410082, China
- Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA
| |
Collapse
|
18
|
Saenz-Méndez P, Eriksson M, Eriksson LA. Ligand Selectivity between the ADP-Ribosylating Toxins: An Inverse-Docking Study for Multitarget Drug Discovery. ACS OMEGA 2017; 2:1710-1719. [PMID: 30023642 PMCID: PMC6044789 DOI: 10.1021/acsomega.7b00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/17/2017] [Indexed: 06/02/2023]
Abstract
Bacterial adenosine 5'-diphosphate-ribosylating toxins are encoded by several human pathogens, such as Pseudomonas aeruginosa (exotoxin A (ETA)), Corynebacterium diphtheriae (diphtheria toxin (DT)), and Vibrio cholerae (cholix toxin (CT)). The toxins modify eukaryotic elongation factor 2, an essential human enzyme in protein synthesis, thereby causing cell death. Targeting external virulence factors, such as the above toxins, is a promising alternative for developing new antibiotics, while at the same time avoiding drug resistance. This study aims to establish a reliable computational methodology to find a "silver bullet" able to target all three toxins. Herein, we have undertaken a detailed analysis of the active sites of ETA, DT, and CT, followed by the determination of the most appropriate selection of the size of the docking sphere. Thereafter, we tested two different approaches for normalizing the docking scores and used these to verify the best target (toxin) for each ligand. The results indicate that the methodology is suitable for identifying selective as well as multitoxin inhibitors, further validating the robustness of inverse docking for target-fishing experiments.
Collapse
Affiliation(s)
- Patricia Saenz-Méndez
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
- Computational
Chemistry and Biology Group, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Martin Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
19
|
|
20
|
McEwan DL, Feinbaum RL, Stroustrup N, Haas W, Conery AL, Anselmo A, Sadreyev R, Ausubel FM. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway. BMC Biol 2016; 14:105. [PMID: 27927200 PMCID: PMC5143455 DOI: 10.1186/s12915-016-0334-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. RESULTS We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. CONCLUSIONS NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.
Collapse
Affiliation(s)
- Deborah L. McEwan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Rhonda L. Feinbaum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | | | - Wilhelm Haas
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA USA
| | - Annie L. Conery
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Present Address: Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA USA
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA
- Department of Genetics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
21
|
Billod JM, Saenz-Mendez P, Blomberg A, Eriksson LA. Structures, Properties, and Dynamics of Intermediates in eEF2-Diphthamide Biosynthesis. J Chem Inf Model 2016; 56:1776-86. [PMID: 27525663 DOI: 10.1021/acs.jcim.6b00223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation Elongation Factor 2 (eEF2) is an essential enzyme in protein synthesis. eEF2 contains a unique modification of a histidine (His699 in yeast; HIS) into diphthamide (DTA), obtained via 3-amino-3-carboxypropyl (ACP) and diphthine (DTI) intermediates in the biosynthetic pathway. This essential and unique modification is also vulnerable, in that it can be efficiently targeted by NAD(+)-dependent ADP-ribosylase toxins, such as diphtheria toxin (DT). However, none of the intermediates in the biosynthesis path is equally vulnerable against the toxins. This study aims to address the different susceptibility of DTA and its precursors against bacterial toxins. We have herein undertaken a detailed in silico study of the structural features and dynamic motion of different His699 intermediates along the diphthamide synthesis pathway (HIS, ACP, DTI, DTA). The study points out that DTA forms a strong hydrogen bond with an asparagine which might explain the ADP-ribosylation mechanism caused by the diphtheria toxin (DT). Finally, in silico mutagenesis studies were performed on the DTA modified protein, in order to hamper the formation of such a hydrogen bond. The results indicate that the mutant structure might in fact be less susceptible to attack by DT and thereby behave similarly to DTI in this respect.
Collapse
Affiliation(s)
- Jean-Marc Billod
- Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC , 28040 Madrid, Spain
| | - Patricia Saenz-Mendez
- Computational Chemistry and Biology Group, Facultad de Química, Universidad de la República , 11800 Montevideo, Uruguay
| | | | | |
Collapse
|
22
|
Balasubramanian V, Sellegounder D, Suman K, Krishnaswamy B. Proteome analysis reveals translational inhibition of Caenorhabditis elegans enhances susceptibility to Pseudomonas aeruginosa PAO1 pathogenesis. J Proteomics 2016; 145:141-152. [PMID: 27109352 DOI: 10.1016/j.jprot.2016.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 01/14/2023]
Abstract
UNLABELLED Caenorhabditis elegans-Pseudomonas aeruginosa infection model is commonly used for pathogenesis studies over the decades. In the present study, upon exposure to the Pseudomonas aeruginosa PAO1, the 2D-PAGE was performed to examine the total proteins differences of C. elegans during the PAO1 infection at different time durations (12-48h). Also, the 2D-DIGE using the cyanine dyes were performed (48h) to identify the differentially regulated proteins against the PAO1 infection. Among the 19 short-listed proteins, 5 proteins were down-regulated and 14 proteins were up-regulated. Eukaryotic elongation factor-2 (EEF-2), a GTP binding protein involves in protein elongation process was down regulated during the pathogen infection. The 2D-PAGE analysis and MS data for the 12 and 24h infections identified the NDK-1 and other essential protein includes, ACS-18, ACT-1, GPD-3, GDH-1 and LBP-6 which are involved in important cellular homeostasis were down regulated. Validation studies using qPCR analysis for eef-2 and other selected genes, western blot analysis for EEF-2 and effect of host translational inhibition studies using Cycloheximide during PAO1 infection suggests that P. aeruginosa systematically restrains the function of host by arresting the expression of EEF-2 and thereby inhibiting protein translational events. Further, in silico analysis revealed the Exotoxin A could directly bind with the host EEF-2 and NDK-1 during the C. elegans- PAO1 interactions. BIOLOGICAL SIGNIFICANCE Model system, C. elegans facilitates the identification of virulence mechanisms during bacterial pathogenesis. Upon infection by the fungal and bacterial pathogens, the C. elegans system induces an array of transcriptional responses, including differential expression of effector/modulator genes that provide safeguard and fight against infection. However, the in-depth knowledge of host response by the pathogen at protein level remains unclear. Much of the studies were carried out only at the transcripts level and scarce reports are available at the protein level for the host-pathogen interaction studies. In order to provide few interesting clues at the protein level, the nematode, C. elegans was infected with the human pathogen P. aeruginosa and the response(s) of host was investigated at the protein level by 2D-DIGE analysis and further validation studies using qPCR and western blotting techniques. Our differential proteomics data suggest that translational inhibition as one of the patterns of pathogenesis in C. elegans during P. aeruginosa infection. Since many of the effectors identified through C. elegans are conserved in other systems including human, our data pave the way for understanding important regulatory pathways involved during bacterial pathogenesis that can be translated into higher eukaryotic organisms.
Collapse
Affiliation(s)
| | - Durai Sellegounder
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Kundu Suman
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
23
|
Lyons B, Ravulapalli R, Lanoue J, Lugo MR, Dutta D, Carlin S, Merrill AR. Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. J Biol Chem 2016; 291:11198-215. [PMID: 27002155 PMCID: PMC4900268 DOI: 10.1074/jbc.m115.707653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/12/2016] [Indexed: 11/06/2022] Open
Abstract
A bioinformatics strategy was used to identify Scabin, a novel DNA-targeting enzyme from the plant pathogen 87.22 strain of Streptomyces scabies Scabin shares nearly 40% sequence identity with the Pierisin family of mono-ADP-ribosyltransferase toxins. Scabin was purified to homogeneity as a 22-kDa single-domain enzyme and was shown to possess high NAD(+)-glycohydrolase (Km (NAD) = 68 ± 3 μm; kcat = 94 ± 2 min(-1)) activity with an RSQXE motif; it was also shown to target deoxyguanosine and showed sigmoidal enzyme kinetics (K0.5(deoxyguanosine) = 302 ± 12 μm; kcat = 14 min(-1)). Mass spectrometry analysis revealed that Scabin labels the exocyclic amino group on guanine bases in either single-stranded or double-stranded DNA. Several small molecule inhibitors were identified, and the most potent compounds were found to inhibit the enzyme activity with Ki values ranging from 3 to 24 μm PJ34, a well known inhibitor of poly-ADP-ribosyltransferases, was shown to be the most potent inhibitor of Scabin. Scabin was crystallized, representing the first structure of a DNA-targeting mono-ADP-ribosyltransferase enzyme; the structures of the apo-form (1.45 Å) and with two inhibitors (P6-E, 1.4 Å; PJ34, 1.6 Å) were solved. These x-ray structures are also the first high resolution structures of the Pierisin subgroup of the mono-ADP-ribosyltransferase toxin family. A model of Scabin with its DNA substrate is also proposed.
Collapse
Affiliation(s)
- Bronwyn Lyons
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Ravikiran Ravulapalli
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Jason Lanoue
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Miguel R Lugo
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - Debajyoti Dutta
- the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Stephanie Carlin
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| | - A Rod Merrill
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada and
| |
Collapse
|
24
|
Lugo MR, Ravulapalli R, Dutta D, Merrill AR. Structural variability of C3larvin toxin. Intrinsic dynamics of the α/β fold of the C3-like group of mono-ADP-ribosyltransferase toxins. J Biomol Struct Dyn 2016; 34:2537-2560. [PMID: 26610041 DOI: 10.1080/07391102.2015.1123189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn-turn and phosphate-nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic 'crab-claw' movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin 'native state.' Implications for docking protocols are derived.
Collapse
Affiliation(s)
- Miguel R Lugo
- a Department of Molecular and Cell Biology , University of Guelph , Science Complex, Guelph , ON N1G2W1 , Canada
| | - Ravikiran Ravulapalli
- a Department of Molecular and Cell Biology , University of Guelph , Science Complex, Guelph , ON N1G2W1 , Canada
| | - Debajyoti Dutta
- b Faculty of Medicine, Department of Biochemistry , University of Alberta , Edmonton , AB T6G 2H7 , Canada
| | - Allan Rod Merrill
- a Department of Molecular and Cell Biology , University of Guelph , Science Complex, Guelph , ON N1G2W1 , Canada
| |
Collapse
|
25
|
Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN, Ledvina HE, Tran BQ, Robinson H, Goo YA, Goodlett DR, Raunser S, Mougous JD. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 2015; 163:607-19. [PMID: 26456113 DOI: 10.1016/j.cell.2015.09.027] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022]
Abstract
Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD(+) and NADP(+). Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.
Collapse
Affiliation(s)
- John C Whitney
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Shin Sawai
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Michele LeRoux
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Brittany N Harding
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Ravulapalli R, Lugo MR, Pfoh R, Visschedyk D, Poole A, Fieldhouse RJ, Pai EF, Merrill AR. Characterization of Vis Toxin, a Novel ADP-Ribosyltransferase from Vibrio splendidus. Biochemistry 2015; 54:5920-36. [PMID: 26352925 DOI: 10.1021/acs.biochem.5b00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vis toxin was identified by a bioinformatics strategy as a putative virulence factor produced by Vibrio splendidus with mono-ADP-ribosyltransferase activity. Vis was purified to homogeneity as a 28 kDa single-domain enzyme and was shown to possess NAD(+)-glycohydrolase [KM(NAD(+)) = 276 ± 12 μM] activity and with an R-S-E-X-E motif; it targets arginine-related compounds [KM(agmatine) = 272 ± 18 mM]. Mass spectrometry analysis revealed that Vis labels l-arginine with ADP-ribose from the NAD(+) substrate at the amino nitrogen of the guanidinium side chain. Vis is toxic to yeast when expressed in the cytoplasm under control of the CUP1 promotor, and catalytic variants lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. Several small molecule inhibitors were identified from a virtual screen, and the most potent compounds were found to inhibit the transferase activity of the enzyme with Ki values ranging from 25 to 134 μM. Inhibitor compound M6 bears the necessary attributes of a solid candidate as a lead compound for therapeutic development. Vis toxin was crystallized, and the structures of the apoenzyme (1.4 Å) and the enzyme bound with NAD(+) (1.8 Å) and with the M6 inhibitor (1.5 Å) were determined. The structures revealed that Vis represents a new subgroup within the mono-ADP-ribosyltransferase toxin family.
Collapse
Affiliation(s)
- Ravikiran Ravulapalli
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Miguel R Lugo
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Roland Pfoh
- Department of Biology, York University , Toronto, ON, Canada M3J 1P3.,Department of Biochemistry, University of Toronto , Toronto, ON, Canada M5S 1A8.,Campbell Family Institute for Cancer Research, Princess Margaret Hospital , Toronto, ON, Canada M5G 1L7
| | - Danielle Visschedyk
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Amanda Poole
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Robert J Fieldhouse
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center , New York, New York 10065, United States.,Department of Systems Biology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Emil F Pai
- Department of Biochemistry, University of Toronto , Toronto, ON, Canada M5S 1A8.,Campbell Family Institute for Cancer Research, Princess Margaret Hospital , Toronto, ON, Canada M5G 1L7.,Departments of Medical Biophysics and Molecular Genetics, University of Toronto , Toronto, ON, Canada M5S 1A8
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
27
|
Lugo MR, Merrill AR. The Father, Son and Cholix Toxin: The Third Member of the DT Group Mono-ADP-Ribosyltransferase Toxin Family. Toxins (Basel) 2015. [PMID: 26213968 PMCID: PMC4549722 DOI: 10.3390/toxins7082757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cholix toxin gene (chxA) was first identified in V. cholerae strains in 2007, and the protein was identified by bioinformatics analysis in 2008. It was identified as the third member of the diphtheria toxin group of mono-ADP-ribosyltransferase toxins along with P. aeruginosa exotoxin A and C. diphtheriae diphtheria toxin. Our group determined the structure of the full-length, three-domain cholix toxin at 2.1 Å and its C-terminal catalytic domain (cholixc) at 1.25 Å resolution. We showed that cholix toxin is specific for elongation factor 2 (diphthamide residue), similar to exotoxin A and diphtheria toxin. Cholix toxin possesses molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm and inhibition of protein synthesis. More recently, we also solved the structure of full-length cholix toxin in complex with NAD+ and proposed a new kinetic model for cholix enzyme activity. In addition, we have taken a computational approach that revealed some important properties of the NAD+-binding pocket at the residue level, including the role of crystallographic water molecules in the NAD+ substrate interaction. We developed a pharmacophore model of cholix toxin, which revealed a cationic feature in the side chain of cholix toxin active-site inhibitors that may determine the active pose. Notably, several recent reports have been published on the role of cholix toxin as a major virulence factor in V. cholerae (non-O1/O139 strains). Additionally, FitzGerald and coworkers prepared an immunotoxin constructed from domains II and III as a cancer treatment strategy to complement successful immunotoxins derived from P. aeruginosa exotoxin A.
Collapse
Affiliation(s)
- Miguel R Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
28
|
van ‘t Wout EFA, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, Marciniak SJ, Hiemstra PS. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog 2015; 11:e1004946. [PMID: 26083346 PMCID: PMC4471080 DOI: 10.1371/journal.ppat.1004946] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/11/2015] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. Pseudomonas aeruginosa causes a devastating infection when it affects patients with cystic fibrosis or other chronic lung diseases. It often causes chronic infection due to its resistance to antibiotic treatment and its ability to form biofilms in these patients. The toxic effects of P. aeruginosa are largely mediated by secreted virulence factors. Efficient functioning of the endoplasmic reticulum is crucial for cell survival and appropriate immune responses, while its dysfunction causes stress and activation of the unfolded protein response. In this study, we found that virulence factors secreted by P. aeruginosa trigger the unfolded protein response in human cells by causing endoplasmic reticulum stress. In addition, secreted virulence factors activate the integrated stress response via a parallel independent pathway. Both stress pathways lead to the induction of the protein GADD34, which appears to provide protection against the toxic effects of the secreted virulence factors.
Collapse
Affiliation(s)
- Emily F. A. van ‘t Wout
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | | | - Ria van Boxtel
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Lucy E. Dalton
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Hanna J. Clarke
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Jan Tommassen
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
29
|
Abstract
Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.
Collapse
Affiliation(s)
- Elodie Segura
- Institut Curie, Paris Cedex 05, France; INSERM U932, Paris Cedex 05, France.
| | | |
Collapse
|
30
|
Lugo MR, Merrill AR. A comparative structure-function analysis of active-site inhibitors of Vibrio cholerae cholix toxin. J Mol Recognit 2015; 28:539-52. [PMID: 25756608 DOI: 10.1002/jmr.2469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/27/2023]
Abstract
Cholix toxin from Vibrio cholerae is a novel mono-ADP-ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high-resolution X-ray structure of full-length cholix toxin in the apo form, NAD(+) bound, and 10 structures of the cholix catalytic domain (C-domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P-series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD(+) was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active-site loops (R-loop). The resulting structural models were used to evaluate the interaction energies and for 3D-QSAR modeling. Implications for a rational drug design approach for mART toxins were derived.
Collapse
Affiliation(s)
- Miguel R Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
31
|
Kolaj-Robin O, McEwen AG, Cavarelli J, Séraphin B. Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongator-dependent tRNA modification. FEBS J 2015; 282:819-33. [PMID: 25604895 DOI: 10.1111/febs.13199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Modification of wobble uridines of many eukaryotic tRNAs requires the Elongator complex, a highly conserved six-subunit eukaryotic protein assembly, as well as the Killer toxin-insensitive (Kti) proteins 11-14. Kti11 was additionally shown to be implicated in the biosynthesis of diphthamide, a post-translationally modified histidine of translation elongation factor 2. Recent data indicate that iron-bearing Kti11 functions as an electron donor to the [4Fe-4S] cluster of radical S-Adenosylmethionine enzymes, triggering the subsequent radical reaction. We show here that recombinant yeast Kti11 forms a stable 1 : 1 complex with Kti13. To obtain insights into the function of this heterodimer, the Kti11/Kti13 complex was purified to homogeneity, crystallized, and its structure determined at 1.45 Å resolution. The importance of several residues mediating complex formation was confirmed by mutagenesis. Kti13 adopts a fold characteristic of RCC1-like proteins. The seven-bladed β-propeller consists of a unique mixture of four- and three-stranded blades. In the complex, Kti13 orients Kti11 and restricts access to its electron-carrying iron atom, constraining the electron transfer capacity of Kti11. Based on these findings, we propose a role for Kti13, and discuss the possible functional implications of complex formation. DATABASE Structural data have been submitted to the Protein Data Bank under accession number 4X33.
Collapse
Affiliation(s)
- Olga Kolaj-Robin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de Recherche Scientifique UMR 7104/Institut National de Santé et de Recherche Médicale U964/Université de Strasbourg, Illkirch, France
| | | | | | | |
Collapse
|
32
|
Lugo MR, Merrill AR. Pocket analysis of the full-length cholix toxin. An assessment of the structure-dynamics of the apo catalytic domain. J Biomol Struct Dyn 2015; 33:2452-68. [PMID: 25559625 DOI: 10.1080/07391102.2014.1000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholix toxin from Vibrio cholerae is the third member of the diphtheria toxin (DT) group of mono-ADP-ribosyltransferase (mART) bacterial toxins. It shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae DT. Cholix toxin is an important model for the development of antivirulence approaches and therapeutics against these toxins from pathogenic bacteria. Herein, we have used the high-resolution X-ray structure of full-length cholix complexed with NAD(+) to describe the properties of the NAD(+)-binding pocket at the residue level, including the role of crystallographic water molecules in the NAD(+) substrate interaction. The full-length apo cholix structure is used to describe the putative NAD(+)-binding site(s) and to correlate biochemical with crystallographic data to study the stoichiometry and orientation of bound NAD(+) molecules. We quantitatively describe the NAD(+) substrate interactions on a residue basis for the main 22 pocket residues in cholixf, a glycerol and 5 contact water molecules as part of the recognition surface by the substrate according to the conditions of crystallization. In addition, the dynamic properties of an in silico version of the catalytic domain were investigated in order to understand the lack of electronic density for one of the main flexible loops (R-loop) in the pocket of X-ray complexes. Implications for a rational drug design approach for mART toxins are derived.
Collapse
Affiliation(s)
- Miguel R Lugo
- a Department of Molecular and Cellular Biology, Science Complex , University of Guelph , Guelph , ON , Canada N1G2W
| | - A Rod Merrill
- a Department of Molecular and Cellular Biology, Science Complex , University of Guelph , Guelph , ON , Canada N1G2W
| |
Collapse
|
33
|
Sung VMH, Tsai CL. ADP-Ribosylargininyl reaction of cholix toxin is mediated through diffusible intermediates. BMC BIOCHEMISTRY 2014; 15:26. [PMID: 25494717 PMCID: PMC4265445 DOI: 10.1186/s12858-014-0026-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
Abstract
Background Cholix toxin is an ADP-ribosyltransferase found in non-O1/non-O139 strains of Vibrio cholera. The catalytic fragment of cholix toxin was characterized as a diphthamide dependent ADP-ribosyltransferase. Results Our studies on the enzymatic activity of cholix toxin catalytic fragment show that the transfer of ADP-ribose to toxin takes place by a predominantly intramolecular mechanism and results in the preferential alkylation of arginine residues proximal to the NAD+ binding pocket. Multiple arginine residues, located near the catalytic site and at distal sites, can be the ADP-ribose acceptor in the auto-reaction. Kinetic studies of a model enzyme, M8, showed that a diffusible intermediate preferentially reacted with arginine residues in proximity to the NAD+ binding pocket. ADP-ribosylarginine activity of cholix toxin catalytic fragment could also modify exogenous substrates. Auto-ADP-ribosylation of cholix toxin appears to have negatively regulatory effect on ADP-ribosylation of exogenous substrate. However, at the presence of both endogenous and exogenous substrates, ADP-ribosylation of exogenous substrates occurred more efficiently than that of endogenous substrates. Conclusions We discovered an ADP-ribosylargininyl activity of cholix toxin catalytic fragment from our studies in auto-ADP-ribosylation, which is mediated through diffusible intermediates. The lifetime of the hypothetical intermediate exceeds recorded and predicted lifetimes for the cognate oxocarbenium ion. Therefore, a diffusible strained form of NAD+ intermediate was proposed to react with arginine residues in a proximity dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/s12858-014-0026-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston 02114, MA, USA.
| | | |
Collapse
|
34
|
Krska D, Ravulapalli R, Fieldhouse RJ, Lugo MR, Merrill AR. C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae. J Biol Chem 2014; 290:1639-53. [PMID: 25477523 DOI: 10.1074/jbc.m114.589846] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
C3larvin toxin was identified by a bioinformatic strategy as a putative mono-ADP-ribosyltransferase and a possible virulence factor from Paenibacillus larvae, which is the causative agent of American Foulbrood in honey bees. C3larvin targets RhoA as a substrate for its transferase reaction, and kinetics for both the NAD(+) (Km = 34 ± 12 μm) and RhoA (Km = 17 ± 3 μm) substrates were characterized for this enzyme from the mono-ADP-ribosyltransferase C3 toxin subgroup. C3larvin is toxic to yeast when expressed in the cytoplasm, and catalytic variants of the enzyme lost the ability to kill the yeast host, indicating that the toxin exerts its lethality through its enzyme activity. A small molecule inhibitor of C3larvin enzymatic activity was discovered called M3 (Ki = 11 ± 2 μm), and to our knowledge, is the first inhibitor of transferase activity of the C3 toxin family. C3larvin was crystallized, and its crystal structure (apoenzyme) was solved to 2.3 Å resolution. C3larvin was also shown to have a different mechanism of cell entry from other C3 toxins.
Collapse
Affiliation(s)
- Daniel Krska
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravikiran Ravulapalli
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Robert J Fieldhouse
- the Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel R Lugo
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - A Rod Merrill
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada,
| |
Collapse
|
35
|
Via A, Uyar B, Brun C, Zanzoni A. How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 2014; 40:36-48. [PMID: 25475989 DOI: 10.1016/j.tibs.2014.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.
Collapse
Affiliation(s)
- Allegra Via
- Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Bora Uyar
- Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christine Brun
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France; CNRS, Marseille F-13402, France
| | - Andreas Zanzoni
- Inserm, UMR1090 TAGC, Marseille F-13288, France; Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
36
|
Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJR. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Mol Microbiol 2014; 94:1213-26. [PMID: 25352115 DOI: 10.1111/mmi.12845] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 01/09/2023]
Abstract
Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK; Institut für Biologie, Abteilung Mikrobiologie, Universität Kassel, 34132, Kassel, Germany
| | | | | | | |
Collapse
|
37
|
Hua YH, Wu CY, Sargsyan K, Lim C. Sequence-motif detection of NAD(P)-binding proteins: discovery of a unique antibacterial drug target. Sci Rep 2014; 4:6471. [PMID: 25253464 PMCID: PMC4174568 DOI: 10.1038/srep06471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023] Open
Abstract
Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.
Collapse
Affiliation(s)
- Yun Hao Hua
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chih Yuan Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- 1] Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan [2] Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
38
|
Abstract
Sepsis, a common and potentially fatal systemic illness, is triggered by microbial infection and often leads to impaired function of the lungs, kidneys or other vital organs. Since the early 1980s, a large number of therapeutic agents for the treatment of sepsis have been evaluated in randomized controlled clinical trials. With few exceptions, the results from these trials have been disappointing, and no specific therapeutic agent is currently approved for the treatment of sepsis. To improve upon this dismal record, investigators will need to identify more suitable therapeutic targets, improve their approaches for selecting candidate compounds for clinical development and adopt better designs for clinical trials.
Collapse
Affiliation(s)
- Mitchell P Fink
- Departments of Surgery and Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, 10833 Le Conte Avenue, 72-160 CHS, Los Angeles California 90095, USA
| | - H Shaw Warren
- Infectious Disease Units, Departments of Pediatrics and Medicine, Massachusetts General Hospital East, 149 13th Street, Fifth Floor, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
39
|
Sorci L, Ruggieri S, Raffaelli N. NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 2014; 23:17-26. [PMID: 25127744 DOI: 10.1016/j.dnarep.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 12/12/2022]
Abstract
In mammals, NAD represents a nodal point for metabolic regulation, and its availability is critical to genome stability. Several NAD-consuming enzymes are induced in various stress conditions and the consequent NAD decline is generally accompanied by the activation of NAD biosynthetic pathways to guarantee NAD homeostasis. In the bacterial world a similar scenario has only recently begun to surface. Here we review the current knowledge on the involvement of NAD homeostasis in bacterial stress response mechanisms. In particular, we focus on the participation of both NAD-consuming enzymes (DNA ligase, mono(ADP-ribosyl) transferase, sirtuins, and RNA 2'-phosphotransferase) and NAD biosynthetic enzymes (both de novo, and recycling enzymes) in the response to DNA/RNA damage. As further supporting evidence for such a link, a genomic context analysis is presented showing several conserved associations between NAD homeostasis and stress responsive genes.
Collapse
Affiliation(s)
- Leonardo Sorci
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silverio Ruggieri
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
40
|
Hendricks MR, Bomberger JM. Who's really in control: microbial regulation of protein trafficking in the epithelium. Am J Physiol Cell Physiol 2013; 306:C187-97. [PMID: 24133062 DOI: 10.1152/ajpcell.00277.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to evolutionary pressure, there are many complex interactions at the interface between pathogens and eukaryotic host cells wherein host cells attempt to clear invading microorganisms and pathogens counter these mechanisms to colonize and invade host tissues. One striking observation from studies focused on this interface is that pathogens have multiple mechanisms to modulate and disrupt normal cellular physiology to establish replication niches and avoid clearance. The precision by which pathogens exert their effects on host cells makes them excellent tools to answer questions about cell physiology of eukaryotic cells. Furthermore, an understanding of these mechanisms at the host-pathogen interface will benefit our understanding of how pathogens cause disease. In this review, we describe a few examples of how pathogens disrupt normal cellular physiology and protein trafficking at epithelial cell barriers to underscore how pathogens modulate cellular processes to cause disease and how this knowledge has been utilized to learn about cellular physiology.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | |
Collapse
|
41
|
Feijs KLH, Forst AH, Verheugd P, Lüscher B. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 2013; 14:443-51. [PMID: 23736681 PMCID: PMC7097401 DOI: 10.1038/nrm3601] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The function and regulation of poly(ADP-ribosyl)ation is partially understood. By contrast, little is known about intracellular mono(ADP-ribosyl)ation (MARylation) by ADP-ribosyl transferases. Recent findings indicate that MARylation regulates signalling and transcription by modifying key components in these processes, and that specific macrodomain-containing proteins 'read' and 'erase' this modification. ADP-ribosylation of proteins was first described in the early 1960's, and today the function and regulation of poly(ADP-ribosyl)ation (PARylation) is partially understood. By contrast, little is known about intracellular mono(ADP-ribosyl)ation (MARylation) by ADP-ribosyl transferase (ART) enzymes, such as ARTD10. Recent findings indicate that MARylation regulates signalling and transcription by modifying key components in these processes. Emerging evidence also suggests that specific macrodomain-containing proteins, including ARTD8, macroD1, macroD2 and C6orf130, which are distinct from those affecting PARylation, interact with MARylation on target proteins to 'read' and 'erase' this modification. Thus, studying macrodomain-containing proteins is key to understanding the function and regulation of MARylation.
Collapse
Affiliation(s)
- Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
42
|
Barry KC, Fontana MF, Portman JL, Dugan AS, Vance RE. IL-1α signaling initiates the inflammatory response to virulent Legionella pneumophila in vivo. THE JOURNAL OF IMMUNOLOGY 2013; 190:6329-39. [PMID: 23686480 DOI: 10.4049/jimmunol.1300100] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that is the cause of a severe pneumonia in humans called Legionnaires' disease. A key feature of L. pneumophila pathogenesis is the rapid influx of neutrophils into the lungs, which occurs in response to signaling via the IL-1R. Two distinct cytokines, IL-1α and IL-1β, can stimulate the type I IL-1R. IL-1β is produced upon activation of cytosolic sensors called inflammasomes that detect L. pneumophila in vitro and in vivo. Surprisingly, we find no essential role for IL-1β in neutrophil recruitment to the lungs in response to L. pneumophila. Instead, we show that IL-1α is a critical initiator of neutrophil recruitment to the lungs of L. pneumophila-infected mice. We find that neutrophil recruitment in response to virulent L. pneumophila requires the production of IL-1α specifically by hematopoietic cells. In contrast to IL-1β, the innate signaling pathways that lead to the production of IL-1α in response to L. pneumophila remain poorly defined. In particular, although we confirm a role for inflammasomes for initiation of IL-1β signaling in vivo, we find no essential role for inflammasomes in production of IL-1α. Instead, we propose that a novel host pathway, perhaps involving inhibition of host protein synthesis, is responsible for IL-1α production in response to virulent L. pneumophila. Our results establish IL-1α as a critical initiator of the inflammatory response to L. pneumophila in vivo and point to an important role for IL-1α in providing an alternative to inflammasome-mediated immune responses in vivo.
Collapse
Affiliation(s)
- Kevin C Barry
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
43
|
Yao L, Daniels J, Wijesinghe D, Andreev OA, Reshetnyak YK. pHLIP®-mediated delivery of PEGylated liposomes to cancer cells. J Control Release 2013; 167:228-37. [PMID: 23416366 DOI: 10.1016/j.jconrel.2013.01.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 01/12/2023]
Abstract
We develop a method for pH-dependent fusion between liposomes and cellular membranes using pHLIP® (pH Low Insertion Peptide), which inserts into lipid bilayer of membrane only at low pH. Previously we establish the molecular mechanism of peptide action and show that pHLIP can target acidic diseased tissue. Here we investigate how coating of PEGylated liposomes with pHLIP might affect liposomal uptake by cells. The presence of pHLIP on the surface of PEGylated-liposomes enhanced membrane fusion and lipid exchange in a pH dependent fashion, leading to increase of cellular uptake and payload release, and inhibition of cell proliferation by liposomes containing ceramide. A novel type of pH-sensitive, "fusogenic" pHLIP-liposomes was developed, which could be used to selectively deliver various diagnostic and therapeutic agents to acidic diseased cells.
Collapse
Affiliation(s)
- Lan Yao
- Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
44
|
Zaja R, Mikoč A, Barkauskaite E, Ahel I. Molecular Insights into Poly(ADP-ribose) Recognition and Processing. Biomolecules 2012; 3:1-17. [PMID: 24970154 PMCID: PMC4030884 DOI: 10.3390/biom3010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/01/2012] [Accepted: 12/17/2012] [Indexed: 01/25/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational protein modification involved in the regulation of important cellular functions including DNA repair, transcription, mitosis and apoptosis. The amount of poly(ADP-ribosyl)ation (PAR) in cells reflects the balance of synthesis, mediated by the PARP protein family, and degradation, which is catalyzed by a glycohydrolase, PARG. Many of the proteins mediating PAR metabolism possess specialised high affinity PAR-binding modules that allow the efficient sensing or processing of the PAR signal. The identification of four such PAR-binding modules and the characterization of a number of proteins utilising these elements during the last decade has provided important insights into how PAR regulates different cellular activities. The macrodomain represents a unique PAR-binding module which is, in some instances, known to possess enzymatic activity on ADP-ribose derivatives (in addition to PAR-binding). The most recently discovered example for this is the PARG protein, and several available PARG structures have provided an understanding into how the PARG macrodomain evolved into a major enzyme that maintains PAR homeostasis in living cells.
Collapse
Affiliation(s)
- Roko Zaja
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | - Andreja Mikoč
- Rudjer Boskovic Institute, Bijenicka 54, Zagreb 10000, Croatia.
| | - Eva Barkauskaite
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | - Ivan Ahel
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| |
Collapse
|
45
|
Romaniuk SI, Kolybo DV, Komisarenko SV. Recombinant diphtheria toxin derivatives: Perspectives of application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:639-52. [DOI: 10.1134/s106816201206012x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Visschedyk D, Rochon A, Tempel W, Dimov S, Park HW, Merrill AR. Certhrax toxin, an anthrax-related ADP-ribosyltransferase from Bacillus cereus. J Biol Chem 2012; 287:41089-102. [PMID: 22992735 DOI: 10.1074/jbc.m112.412809] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD(+) with high affinity (K(D) = 52.3 ± 12.2 μM). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (K(D) = 1.7 ± 0.2 μM, K(i) = 1.8 ± 0.4 μM) and PJ34 (K(D) = 5.8 ± 2.6 μM, K(i) = 9.6 ± 0.3 μM)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD(+) binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus.
Collapse
Affiliation(s)
- Danielle Visschedyk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Cherkis KA, Temple BRS, Chung EH, Sondek J, Dangl JL. AvrRpm1 missense mutations weakly activate RPS2-mediated immune response in Arabidopsis thaliana. PLoS One 2012; 7:e42633. [PMID: 22880057 PMCID: PMC3412798 DOI: 10.1371/journal.pone.0042633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/09/2012] [Indexed: 02/04/2023] Open
Abstract
Plants recognize microbes via specific pattern recognition receptors that are activated by microbe-associated molecular patterns (MAMPs), resulting in MAMP-triggered immunity (MTI). Successful pathogens bypass MTI in genetically diverse hosts via deployment of effectors (virulence factors) that inhibit MTI responses, leading to pathogen proliferation. Plant pathogenic bacteria like Pseudomonas syringae utilize a type III secretion system to deliver effectors into cells. These effectors can contribute to pathogen virulence or elicit disease resistance, depending upon the host plant genotype. In disease resistant genotypes, intracellular immune receptors, typically belonging to the nucleotide binding leucine-rich repeat family of proteins, perceive bacterial effector(s) and initiate downstream defense responses (effector triggered immunity) that include the hypersensitive response, and transcriptional re-programming leading to various cellular outputs that collectively halt pathogen growth. Nucleotide binding leucine-rich repeat sensors can be indirectly activated via perturbation of a host protein acting as an effector target. AvrRpm1 is a P. syringae type III effector. Upon secretion into the host cell, AvrRpm1 is acylated by host enzymes and directed to the plasma membrane, where it contributes to virulence. This is correlated with phosphorylation of Arabidopsis RIN4 in vivo. RIN4 is a negative regulator of MAMP-triggered immunity, and its modification in the presence of four diverse type III effectors, including AvrRpm1, likely enhances this RIN4 regulatory function. The RPM1 nucleotide binding leucine-rich repeat sensor perceives RIN4 perturbation in disease resistant plants, leading to a successful immune response. Here, demonstrate that AvrRpm1 has a fold homologous to the catalytic domain of poly(ADP-ribosyl) polymerase. Site-directed mutagenesis of each residue in the putative catalytic triad, His63-Tyr122-Asp185 of AvrRpm1, results in loss of both AvrRpm1-dependent virulence and AvrRpm1-mediated activation of RPM1, but, surprisingly, causes a gain of function: the ability to activate the RPS2 nucleotide binding leucine-rich repeat sensor.
Collapse
Affiliation(s)
- Karen A. Cherkis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brenda R. S. Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- R.L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John Sondek
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
48
|
Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012; 7:18. [PMID: 22731697 PMCID: PMC3482391 DOI: 10.1186/1745-6150-7-18] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. RESULTS Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. CONCLUSIONS Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
49
|
McEwan DL, Kirienko NV, Ausubel FM. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe 2012; 11:364-74. [PMID: 22520464 PMCID: PMC3334877 DOI: 10.1016/j.chom.2012.02.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/06/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
Abstract
Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2.
Collapse
Affiliation(s)
- Deborah L McEwan
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
50
|
Abstract
Bacterial infections cause substantial mortality and burden of disease globally. Induction of a strong innate inflammatory response is the first common host mechanism required for elimination of the invading pathogens. The host transcription factor, nuclear factor kappa B (NF-κB) is essential for immune activation. Conversely, bacterial pathogens have evolved strategies to interfere directly with host cell signalling by regulating or mimicking host proteins. Given the key role of NF-κB in the host inflammatory response, bacteria have expectedly developed virulence effectors interfering with NF-κB signalling pathways. In this review, we explore the bacterial mechanisms utilized to prevent effective NF-κB signalling, which in turn usurp the host inflammatory response.
Collapse
Affiliation(s)
- Gaëlle Le Negrate
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|