1
|
Tang X, Zou Q, Yan Y, He F, Cui Y, Lian Y, Zhangsun D, Wu Y, Luo S. Integrative transcriptome and mass spectrometry analysis reveals novel cyclotides with antimicrobial and cytotoxic activities from Viola arcuata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109300. [PMID: 39608337 DOI: 10.1016/j.plaphy.2024.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Xue Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Qiongyan Zou
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yujiao Yan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Fawei He
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yunfei Cui
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yuanyuan Lian
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Yong Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China.
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
2
|
Taghizadeh MS, Niazi A, Mirzapour-Kouhdasht A, Pereira EC, Garcia-Vaquero M. Enhancing cyclotide bioproduction: harnessing biological synthesis methods and various expression systems for large-scale manufacturing. Crit Rev Biotechnol 2024:1-23. [PMID: 39510598 DOI: 10.1080/07388551.2024.2412780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/15/2024]
Abstract
Peptide-based medications hold immense potential in addressing a wide range of human disorders and discomforts. However, their widespread utilization encounters two major challenges: preservation and production efficiency. Cyclotides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit unique characteristics, such as a cyclic backbone and cystine knot, enhancing their stability and contributing to a wide range of pharmacological properties exhibited by these compounds. Cyclotides are efficient in the biomedical (e.g., antitumor, antidiabetic, antimicrobial, antiviral) and agrochemical fields by exhibiting activity against pests and plant diseases. Furthermore, their structural attributes make them suitable as molecular scaffolds for grafting and drug delivery. Notably, the mutated variant of kalata B1 cyclotide ([T20K] kalata B1) has recently entered phase 1 of human clinical trials for multiple sclerosis, building upon the success observed in animal trials. To enable large-scale production of cyclotides, it is crucial to further explore their remarkable structural and bioactive properties. This necessitates extensive research focused on enhancing the efficiency of the processes required for their production. This study provides a comprehensive review of the biological synthesis methods of cyclotides, with particular emphasis on various expression systems, namely bacteria, plants, yeast, and cell-free systems. By investigating these expression systems, it becomes possible to design production systems that are adaptable, economically viable, and efficient for generating active and pure cyclotides at an industrial scale. The advantages of biological synthesis over chemical synthesis are thoroughly explored, highlighting the potential of these expression systems in meeting the demands of large-scale cyclotide production.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Eric C Pereira
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Mikami R, Nishizawa Y, Iwata Y, Kanemura S, Okumura M, Arai K. ER Oxidoreductin 1-Like Activity of Cyclic Diselenides Drives Protein Disulfide Isomerase in an Electron Relay System. Chembiochem 2024:e202400739. [PMID: 39505703 DOI: 10.1002/cbic.202400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network constructed by protein disulfide isomerase (PDI), with a CGHC sequence as the redox-active site, and its family enzymes. Creating reagents that mimic the functions of these enzymes facilitates folding during chemical protein synthesis. In this study, we aimed to imitate a biological electron relay system using cyclic diselenide compounds as surrogates for endoplasmic reticulum oxidoreductin 1 (Ero1), which is responsible for the re-oxidation of PDI. Oxidized PDI (PDIox) introduces disulfide bonds into substrate proteins, resulting in its conversion to reduced PDI (PDIred). The PDIred is then re-oxidized to PDIox by a coexisting cyclic diselenide compound, thereby restoring the function of PDI as a disulfide-forming agent. The produced diselenol state is readily oxidized to the original diselenide state with molecular oxygen, continuously sustaining the PDI catalytic cycle. This artificial electron relay system regulating enzymatic PDI function effectively promotes the oxidative folding of disulfide-containing proteins, such as insulin - a hypoglycemic formulation - by enhancing both yield and reaction velocity.
Collapse
Affiliation(s)
- Rumi Mikami
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuya Nishizawa
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Yuki Iwata
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiaza Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi, 980-8577, Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
- Institute of Advanced Biosciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
4
|
Hahn KR, Kwon HJ, Kim DW, Hwang IK, Yoon YS. Therapeutic Options of Crystallin Mu and Protein Disulfide Isomerase A3 for Cuprizone-Induced Demyelination in Mouse Hippocampus. Neurochem Res 2024; 49:3078-3093. [PMID: 39164609 PMCID: PMC11449959 DOI: 10.1007/s11064-024-04227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
This study investigates the changes in hippocampal proteomic profiles during demyelination and remyelination using the cuprizone model. Employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry for protein profiling, we observed significant alterations in the expression of ketimine reductase mu-crystallin (CRYM) and protein disulfide isomerase A3 precursor (PDIA3) following exposure to and subsequent withdrawal from cuprizone. Immunohistochemical staining validated these protein expression patterns in the hippocampus, revealing that both PDIA3 and CRYM were downregulated in the hippocampal CA1 region during demyelination and upregulated during remyelination. Additionally, we explored the potential protective effects of CRYM and PDIA3 against cuprizone-induced demyelination by synthesizing cell-permeable Tat peptide-fusion proteins (Tat-CRYM and Tat-PDIA3) to facilitate their crossing through the blood-brain barrier. Our results indicated that administering Tat-CRYM and Tat-PDIA3 mitigated the reduction in proliferating cell and differentiated neuroblast counts compared to the group receiving cuprizone alone. Notably, Tat-PDIA3 demonstrated significant effects in enhancing myelin basic protein expression alongside phosphorylation of CREB in the hippocampus, suggesting its potential therapeutic role in the prevention or treatment of demyelination, and by extension, in conditions such as multiple sclerosis.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
5
|
Petit C, Kojak E, Webster S, Marra M, Sweeney B, Chaikin C, Jemc JC, Kanzok SM. The evolutionarily conserved PhLP3 is essential for sperm development in Drosophila melanogaster. PLoS One 2024; 19:e0306676. [PMID: 39480878 PMCID: PMC11527243 DOI: 10.1371/journal.pone.0306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Phosducin-like proteins (PhLP) are thioredoxin domain-containing proteins that are highly conserved across unicellular and multicellular organisms. PhLP family proteins are hypothesized to function as co-chaperones in the folding of cytoskeletal proteins. Here, we present the initial molecular, biochemical, and functional characterization of CG4511 as Drosophila melanogaster PhLP3. We cloned the gene into a bacterial expression vector and produced enzymatically active recombinant PhLP3, which showed similar kinetics to previously characterized orthologues. A fly strain homozygous for a P-element insertion in the 5' UTR of the PhLP3 gene exhibited significant downregulation of PhLP3 expression. We found these male flies to be sterile. Microscopic analysis revealed altered testes morphology and impairment of spermiogenesis, leading to a lack of mature sperm. Among the most significant observations was the lack of actin cones during sperm maturation. Excision of the P-element insertion in PhLP3 restored male fertility, spermiogenesis, and seminal vesicle size. Given the high level of conservation of PhLP3, our data suggests PhLP3 may be an important regulator of sperm development across species.
Collapse
Affiliation(s)
- Christopher Petit
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Kojak
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Samantha Webster
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michela Marra
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Brendan Sweeney
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Claire Chaikin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Jennifer C. Jemc
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Wang C, Sun P, Jia Y, Tang X, Liu X, Suo X, Peng H. Protein disulfide isomerase PDI8 is indispensable for parasite growth and associated with secretory protein processing in Toxoplasma gondii. mBio 2024; 15:e0205124. [PMID: 39162526 PMCID: PMC11389393 DOI: 10.1128/mbio.02051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Protein disulfide isomerase, containing thioredoxin (Trx) domains, serves as a vital enzyme responsible for oxidative protein folding (the formation, reduction, and isomerization of disulfide bonds in newly synthesized proteins) in the endoplasmic reticulum (ER). However, the role of ER-localized PDI proteins in parasite growth and their interaction with secretory proteins remain poorly understood. In this study, we identified two ER-localized PDI proteins, TgPDI8 and TgPDI6, in Toxoplasma gondii. Conditional knockdown of TgPDI8 resulted in a significant reduction in intracellular proliferation and invasion abilities, leading to a complete block in plaque formation on human foreskin fibroblast monolayers, whereas parasites lacking TgPDI6 did not exhibit any apparent fitness defects. The complementation of TgPDI8 with mutant variants highlighted the critical role of the CXXC active site cysteines within its Trx domains for its enzymatic activity. By utilizing TurboID-based proximity labeling, we uncovered a close association between PDI proteins and canonical secretory proteins. Furthermore, parasites lacking TgPDI8 showed a significant reduction in the expression of secretory proteins, especially those from micronemes and dense granules. In summary, our study elucidates the roles of TgPDI8 and sets the stage for future drug discovery studies. IMPORTANCE Apicomplexans, a phylum of intracellular parasites, encompass various zoonotic pathogens, including Plasmodium, Cryptosporidium, Toxoplasma, and Babesia, causing a significant economic burden on human populations. These parasites exhibit hypersensitivity to disruptions in endoplasmic reticulum (ER) redox homeostasis, necessitating the presence of ER-localized thioredoxin (Trx) superfamily proteins, particularly protein disulfide isomerase (PDI), for proper oxidative folding. However, the functional characteristics of ER-localized PDI proteins in Toxoplasma gondii remain largely unexplored. In this study, we identified two ER-localized proteins, namely, TgPDI8 and TgPDI6, and demonstrated the indispensable role of TgPDI8 in parasite survival. Through a comprehensive multi-omics analysis, we elucidated the crucial role of TgPDI8 in the processing of secretory proteins in T. gondii. Additionally, we introduced a novel ER-anchored TurboID method to label and identify canonical secretory proteins in T. gondii. This research opens up new avenues for understanding oxidative folding and the secretory pathway in apicomplexan parasites, laying the groundwork for future advancements in antiparasitic drug development.
Collapse
Affiliation(s)
- Chaoyue Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Sun
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou, Guangdong Province, China
| | - Yonggen Jia
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou City, Guangdong Province, China
- Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Zhang B, Hong D, Qian H, Ma K, Zhu L, Jiang L, Ge J. Unveiling a new strategy for PDIA1 inhibition: Integration of activity-based probes profiling and targeted degradation. Bioorg Chem 2024; 150:107585. [PMID: 38917491 DOI: 10.1016/j.bioorg.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The overexpression of PDIA1 in cancer has spurred the quest for effective inhibitors. However, existing inhibitors often bind to only one active site, limiting their efficacy. In our study, we developed a PROTAC-mimetic probe dPA by combining PACMA31 (PA) analogs with cereblon-directed pomalidomide. Through protein profiling and analysis, we confirmed dPA's specific interaction with PDIA1's active site cysteines. We further synthesized PROTAC variants with a thiophene ring and various linkers to enhance degradation efficiency. Notably, H4, featuring a PEG linker, induced significant PDIA1 degradation and inhibited cancer cell proliferation similarly to PA. The biosafety profile of H4 is comparable to that of PA, highlighting its potential for further development in cancer therapy. Our findings highlight a novel strategy for PDIA1 inhibition via targeted degradation, offering promising prospects in cancer therapeutics. This approach may overcome limitations of conventional inhibitors, presenting new avenues for advancing anti-cancer interventions.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dawei Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hujuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keqing Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; General Surgery, Department of Breast Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Linye Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Zhang H, Zhang Y, Cui K, Liu C, Chen M, Fu Y, Li Z, Ma H, Zhang H, Qi B, Xu J. A Global Identification of Protein Disulfide Isomerases from 'duli' Pear ( Pyrus betulaefolia) and Their Expression Profiles under Salt Stress. Genes (Basel) 2024; 15:968. [PMID: 39202330 PMCID: PMC11353384 DOI: 10.3390/genes15080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type 'duli' pear (Pyrus betulaefolia) is an important rootstock commonly used for commercial pear tree grafting in northern China. In this study, we identified 24 PDI genes, named PbPDIs, from the genome of 'duli' pear. With 12 homologous gene pairs, these 24 PbPDIs distribute on 12 of its 17 chromosomes. Phylogenetic analysis placed the 24 PbPDIs into four clades and eleven groups. Collinearity analysis of the PDIs between P. betulaefolia, Arabidopsis thaliana, and Oryza sativa revealed that the PbPDIs of 'duli' pear show a strong collinear relationship with those from Arabidopsis, a dicot; but a weak collinear relationship with those from rice, a monocot. Quantitative RT-PCR analysis showed that most of the PbPDIs were upregulated by salt stress. Identification and expression analysis of 'duli' pear PbPDIs under salt stress conditions could provide useful information for further research in order to generate salt-resistant rootstock for pear grafting in the future.
Collapse
Affiliation(s)
- Hao Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yuyue Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Kexin Cui
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Chang Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Mengya Chen
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Yufan Fu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Zhenjie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Haixia Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| | - Baoxiu Qi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Jianfeng Xu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (Y.Z.); (K.C.); (C.L.); (M.C.); (Y.F.); (Z.L.); (H.M.); (H.Z.)
- Research Center for Pear Engineering and Technology of Hebei Province, Baoding 071001, China
| |
Collapse
|
9
|
Sanyasi C, Balakrishnan SS, Chinnasamy T, Venugopalan N, Kandavelu P, Batra-Safferling R, Muthuvel SK. Insights on the dynamic behavior of protein disulfide isomerase in the solution environment through the SAXS technique. In Silico Pharmacol 2024; 12:23. [PMID: 38584776 PMCID: PMC10997565 DOI: 10.1007/s40203-024-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 04/09/2024] Open
Abstract
The dynamic behavior of Protein Disulfide Isomerase (PDI) in an aqueous solution environment under physiologically active pH has been experimentally verified in this study using Small Angle X-ray Scattering (SAXS) technique. The structural mechanism of dimerization for full-length PDI molecules and co-complex with two renowned substrates has been comprehensively discussed. The structure models obtained from the SAXS data of PDI purified from bovine liver display behavior duality between unaccompanied-enzyme and after engaged with substrates. The analysis of SAXS data revealed that PDI exists as a homo-dimer in the solution environment, and substrate induction provoked its segregation into monomer to enable the enzyme to interact systematically with incoming clients. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00198-0.
Collapse
Affiliation(s)
- Chandrasekar Sanyasi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Susmida Seni Balakrishnan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Thirunavukkarasu Chinnasamy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Nagarajan Venugopalan
- GMCA Structural Biology Facility, X-Ray Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Palani Kandavelu
- SER-CAT and The Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30601 USA
| | - Renu Batra-Safferling
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Suresh Kumar Muthuvel
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| |
Collapse
|
10
|
Tong Z, Xie X, Ge H, Jiao R, Wang T, Wang X, Zhuang W, Hu G, Tan R. Disulfide bridge-targeted metabolome mining unravels an antiparkinsonian peptide. Acta Pharm Sin B 2024; 14:881-892. [PMID: 38322339 PMCID: PMC10840396 DOI: 10.1016/j.apsb.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 02/08/2024] Open
Abstract
Peptides are a particular molecule class with inherent attributes of some small-molecule drugs and macromolecular biologics, thereby inspiring continuous searches for peptides with therapeutic and/or agrochemical potentials. However, the success rate is decreasing, presumably because many interesting but less-abundant peptides are so scarce or labile that they are likely 'overlooked' during the characterization effort. Here, we present the biochemical characterization and druggability improvement of an unprecedented minor fungal RiPP (ribosomally synthesized and post-translationally modified peptide), named acalitide, by taking the relevant advantages of metabolomics approach and disulfide-bridged substructure which is more frequently imprinted in the marketed peptide drug molecules. Acalitide is biosynthetically unique in the macrotricyclization via two disulfide bridges and a protease (AcaB)-catalyzed lactamization of AcaA, an unprecedented precursor peptide. Such a biosynthetic logic was successfully re-edited for its sample supply renewal to facilitate the identification of the in vitro and in vivo antiparkinsonian efficacy of acalitide which was further confirmed safe and rendered brain-targetable by the liposome encapsulation strategy. Taken together, the work updates the mining strategy and biosynthetic complexity of RiPPs to unravel an antiparkinsonian drug candidate valuable for combating Parkinson's disease that is globally prevailing in an alarming manner.
Collapse
Affiliation(s)
- Zhiwu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiahong Xie
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xincun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Zhuang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
11
|
Arai K, Okumura M, Lee YH, Katayama H, Mizutani K, Lin Y, Park SY, Sawada K, Toyoda M, Hojo H, Inaba K, Iwaoka M. Diselenide-bond replacement of the external disulfide bond of insulin increases its oligomerization leading to sustained activity. Commun Chem 2023; 6:258. [PMID: 37989850 PMCID: PMC10663622 DOI: 10.1038/s42004-023-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7UA,C7UB] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin. When the resistance of BPIns to IDE was evaluated in the presence of SeIns, the degradation rate of BPIns became significantly slower than that of BPIns alone. Furthermore, the investigation on the intermolecular association properties of SeIns and BPIns using analytical ultracentrifugation suggested that SeIns readily forms oligomers not only with its own but also with BPIns. The hypoglycemic effect of SeIns on diabetic rats was observed at a dose of 150 μg/300 g rat. The strategy of replacing the solvent-exposed S-S with Se-Se provides new guidance for the design of long-acting insulin formulations.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3, Aramakiaza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
- Bio-Analytical Science, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Research Headquarters, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Korea
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenji Mizutani
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Kaichiro Sawada
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 2-1-1, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
- Institute of Advanced Biosciences, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| |
Collapse
|
12
|
Fang H, Peng Z, Tan B, Peng N, Li B, He D, Xu M, Yang Z. The involvement of PDIA2 gene in the progression of renal cell carcinoma is potentially through regulation of JNK signaling pathway. Clin Transl Oncol 2023; 25:2938-2949. [PMID: 37017923 DOI: 10.1007/s12094-023-03158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients' clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients' survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC.
Collapse
Affiliation(s)
- Huilong Fang
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Zhonglu Peng
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Bin Tan
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Nan Peng
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Biao Li
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China
| | - Dongyang He
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China.
| | - Mingjie Xu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, 105 Jiefang Road, Jinan, Shandong, 250013, People's Republic of China.
| | - Zhiying Yang
- School of Basic Medical Sciences, Xiangnan University, Street Chenzhou No. 889, Chenzhou, 423000, China.
| |
Collapse
|
13
|
Mangiacotti M, Baeckens S, Fumagalli M, Martín J, Scali S, Sacchi R. Protein-lipid Association in Lizard Chemical Signals. Integr Org Biol 2023; 5:obad016. [PMID: 37228571 PMCID: PMC10205002 DOI: 10.1093/iob/obad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein-lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D3, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D3 became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.
Collapse
Affiliation(s)
| | - S Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, 9000 Gent, Belgium
| | - M Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - J Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - S Scali
- Sezione Erpetologia, Museo di Storia Naturale di Milano, Corso Venezia 55, IT-20121 Milano, Italy
| | - R Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Via Taramelli 24, 27100 Pavia, Italy
| |
Collapse
|
14
|
Liu S, Liang H, Lv L, Hu F, Liu Q, Wang Y, Zhu J, Chen Z, Li J, Wang Z, Chang YN, Li J, Ma X, Chen K, Xing G. 3D culture boosting fullerenol nanoparticles to induce calreticulin exposure on MCF-7 cells for enhanced macrophage-mediated cell removal. Colloids Surf B Biointerfaces 2023; 224:113204. [PMID: 36801743 DOI: 10.1016/j.colsurfb.2023.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Calreticulin (CRT) on the cell surface that acts as an "eat me" signal is vital for macrophage-mediated programmed cell removal. The polyhydroxylated fullerenol nanoparticle (FNP) has appeared as an effective inducer to cause CRT exposure on cancer cell surface, but it failed in treating some cancer cells such as MCF-7 cells based on previous findings. Here, we carried out the 3D culture of MCF-7 cells, and interestingly found that the FNP induced CRT exposure on cells in 3D spheres via re-distributing CRT from endoplasmic reticulum (ER) to cell surface. Phagocytosis experiments in vitro and in vivo illustrated the combination of FNP and anti-CD47 monoclonal antibody (mAb) further enhanced macrophage-mediated phagocytosis to cancer cells. The maximal phagocytic index in vivo was about three times higher than that of the control group. Moreover, in vivo tumorigenesis experiments in mice proved that FNP could regulate the progress of MCF-7 cancer stem-like cells (CSCs). These findings expand the application of FNP in tumor therapy of anti-CD47 mAb and 3D culture can be used as a screening tool for nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China; College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Haojun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Fan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Junyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Xiancai Ma
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China.
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| |
Collapse
|
15
|
Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Antioxidants (Basel) 2023; 12:antiox12020380. [PMID: 36829940 PMCID: PMC9952396 DOI: 10.3390/antiox12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
Collapse
Affiliation(s)
- Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Carlos Santos-Martin
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| |
Collapse
|
16
|
Liu J, Maxwell M, Cuddihy T, Crawford T, Bassetti M, Hyde C, Peigneur S, Tytgat J, Undheim EAB, Mobli M. ScrepYard: An online resource for disulfide-stabilized tandem repeat peptides. Protein Sci 2023; 32:e4566. [PMID: 36644825 PMCID: PMC9885460 DOI: 10.1002/pro.4566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Receptor avidity through multivalency is a highly sought-after property of ligands. While readily available in nature in the form of bivalent antibodies, this property remains challenging to engineer in synthetic molecules. The discovery of several bivalent venom peptides containing two homologous and independently folded domains (in a tandem repeat arrangement) has provided a unique opportunity to better understand the underpinning design of multivalency in multimeric biomolecules, as well as how naturally occurring multivalent ligands can be identified. In previous work, we classified these molecules as a larger class termed secreted cysteine-rich repeat-proteins (SCREPs). Here, we present an online resource; ScrepYard, designed to assist researchers in identification of SCREP sequences of interest and to aid in characterizing this emerging class of biomolecules. Analysis of sequences within the ScrepYard reveals that two-domain tandem repeats constitute the most abundant SCREP domain architecture, while the interdomain "linker" regions connecting the functional domains are found to be abundant in amino acids with short or polar sidechains and contain an unusually high abundance of proline residues. Finally, we demonstrate the utility of ScrepYard as a virtual screening tool for discovery of putatively multivalent peptides, by using it as a resource to identify a previously uncharacterized serine protease inhibitor and confirm its predicted activity using an enzyme assay.
Collapse
Affiliation(s)
- Junyu Liu
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Michael Maxwell
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Thom Cuddihy
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,Centre for Clinical ResearchThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Theo Crawford
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Madeline Bassetti
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia
| | - Cameron Hyde
- Queensland Cyber Infrastructure Foundation Ltd.The University of QueenslandSt. LuciaQueenslandAustralia,University of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Steve Peigneur
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven (KU Leuven)LeuvenBelgium
| | - Eivind A. B. Undheim
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia,Centre for Ecological and Evolutionary Synthesis, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mehdi Mobli
- Centre for Advanced ImagingThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
17
|
AC81 Is a Putative Disulfide Isomerase Involved in Baculoviral Disulfide Bond Formation. J Virol 2022; 96:e0116722. [PMID: 36468861 PMCID: PMC9769380 DOI: 10.1128/jvi.01167-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The correct formation of native disulfide bonds is critical for the proper structure and function of many proteins. Cellular disulfide bond formation pathways commonly consist of two parts: sulfhydryl oxidase-mediated oxidation and disulfide isomerase-mediated isomerization. Some large DNA viruses, such as baculoviruses, encode sulfhydryl oxidases, but viral disulfide isomerases have not yet been identified, although G4L in poxvirus has been suggested to serve such a function. Here, we report that the baculovirus core gene ac81 encodes a putative disulfide isomerase. ac81 is conserved in baculoviruses, nudiviruses, and hytrosaviruses. We found that AC81 homologs contain a typical thioredoxin fold conserved in disulfide isomerases. To determine the role of AC81, a series of Autographa californica nucleopolyhedrovirus (AcMNPV) bacmids containing ac81 knockout or point mutations was generated, and the results showed that AC81 is essential for budded virus production, multinucleocapsid occlusion-derived virus (ODV) formation, and ODV embedding in occlusion bodies. Nonreducing Western blot analysis indicated that disulfide bond formation in per os infectivity factor 5 (PIF5), a substrate of the baculoviral sulfhydryl oxidase P33, was abnormal when ac81 was knocked out or mutated. Pulldown assays showed that AC81 interacted with PIF5 and P33 in infected cells. In addition, two critical regions that harbor key amino acids for function were identified in AC81. Taken together, our results suggest that AC81 is a key component involved in the baculovirus disulfide bond formation pathway and likely functions as a disulfide isomerase. IMPORTANCE Many large DNA viruses, such as poxvirus, asfarvirus, and baculovirus, encode their own sulfhydryl oxidase to facilitate the disulfide bond formation of viral proteins. Here, we show that AC81 functions as a putative disulfide isomerase and is involved in multiple functions of the baculovirus life cycle. Interestingly, AC81 and P33 (sulfhydryl oxidase) are conserved in baculoviruses, nudiviruses, and hytrosaviruses, which are all insect-specific large DNA viruses replicating in the nucleus, suggesting that viral disulfide bond formation is an ancient mechanism shared by these viruses.
Collapse
|
18
|
Fondevilla S, Krezdorn N, Rubiales D, Rotter B, Winter P. Bulked segregant transcriptome analysis in pea identifies key expression markers for resistance to Peyronellaea pinodes. Sci Rep 2022; 12:18159. [PMID: 36307494 PMCID: PMC9616913 DOI: 10.1038/s41598-022-22621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Peyronellaea pinodes is a devastating pathogen of pea crop. Quantitative trait loci (QTL) associated with resistance have been identified, as well as genes differentially expressed between resistant and susceptible pea lines. The key question is which of these many genes located into these QTLs, or differentially expressed, are the key genes that distinguish resistant from susceptible plants and could be used as markers. To identify these key genes, in the present study we applied MACE (Massive Analysis of cDNA Ends) -Seq to a whole Recombinant Inbred Line population segregating for resistance to this disease and their parental lines and identified those genes which expression was more correlated with the level of resistance. We also compared gene expression profiles between the most resistant and the most susceptible families of the RIL population. A total of 6780 transcripts were differentially expressed between the parental lines after inoculation. Of them, 803 showed the same expression pattern in the bulks formed by the most resistant and most susceptible RIL families. These genes, showing a consistent expression pattern, could be used as expression markers to distinguish resistant from susceptible plants. The analysis of these genes also discovered the crucial mechanisms acting against P. pinodes.
Collapse
Affiliation(s)
- Sara Fondevilla
- Institute for Sustainable Agriculture, CSIC, 14004, Córdoba, Spain.
| | | | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004, Córdoba, Spain
| | | | | |
Collapse
|
19
|
Choi HJ, Chen TX, Hou MJ, Song JH, Li P, Liu CF, Wang P, Zhu BT. Protection against glutathione depletion-associated oxidative neuronal death by neurotransmitters norepinephrine and dopamine: Protein disulfide isomerase as a mechanistic target for neuroprotection. Acta Pharmacol Sin 2022; 43:2527-2541. [PMID: 35347247 PMCID: PMC9525605 DOI: 10.1038/s41401-022-00891-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is extensively involved in neurodegeneration. Clinical evidence shows that keeping the mind active through mentally-stimulating physical activities can effectively slow down the progression of neurodegeneration. With increased physical activities, more neurotransmitters would be released in the brain. In the present study, we investigated whether some of the released neurotransmitters might have a beneficial effect against oxidative neurodegeneration in vitro. Glutamate-induced, glutathione depletion-associated oxidative cytotoxicity in HT22 mouse hippocampal neuronal cells was used as an experimental model. We showed that norepinephrine (NE, 50 µM) or dopamine (DA, 50 µM) exerted potent protective effect against glutamate-induced cytotoxicity, but this effect was not observed when other neurotransmitters such as histamine, γ-aminobutyric acid, serotonin, glycine and acetylcholine were tested. In glutamate-treated HT22 cells, both NE and DA significantly suppressed glutathione depletion-associated mitochondrial dysfunction including mitochondrial superoxide accumulation, ATP depletion and mitochondrial AIF release. Moreover, both NE and DA inhibited glutathione depletion-associated MAPKs activation, p53 phosphorylation and GADD45α activation. Molecular docking analysis revealed that NE and DA could bind to protein disulfide isomerase (PDI). In biochemical enzymatic assay in vitro, NE and DA dose-dependently inhibited the reductive activity of PDI. We further revealed that the protective effect of NE and DA against glutamate-induced oxidative cytotoxicity was mediated through inhibition of PDI-catalyzed dimerization of the neuronal nitric oxide synthase. Collectively, the results of this study suggest that NE and DA may have a protective effect against oxidative neurodegeneration through inhibition of protein disulfide isomerase and the subsequent activation of the MAPKs‒p53‒GADD45α oxidative cascade.
Collapse
Affiliation(s)
- Hye Joung Choi
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tong-Xiang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Ji Hoon Song
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chun-Feng Liu
- Institute of Neuroscience, Soochow University, and Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
20
|
Mondal S, Singh SP. New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life. Heliyon 2022; 8:e10776. [PMID: 36203893 PMCID: PMC9529593 DOI: 10.1016/j.heliyon.2022.e10776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.
Collapse
|
21
|
A Role for Basigin in Toxoplasma gondii Infection. Infect Immun 2022; 90:e0020522. [PMID: 35913173 PMCID: PMC9387297 DOI: 10.1128/iai.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.
Collapse
|
22
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
23
|
Han Y, Liu C, Xu H, Cao Y. Engineering reversible hydrogels for
3D
cell culture and release using diselenide catalyzed fast disulfide formation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics Nanjing University Nanjing Jiangsu 210093 China
- Jinan Microecological Biomedicine Shandong Laboratory Jinan Shandong 250021 China
| |
Collapse
|
24
|
Gao G, Liu X, Gu Z, Mu Q, Zhu G, Zhang T, Zhang C, Zhou L, Shen L, Sun T. Engineering Nanointerfaces of Au 25 Clusters for Chaperone-Mediated Peptide Amyloidosis. NANO LETTERS 2022; 22:2964-2970. [PMID: 35297644 DOI: 10.1021/acs.nanolett.2c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.
Collapse
Affiliation(s)
- Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xinglin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qingxue Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guowei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ting Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Cheng Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
25
|
Zhao G, Meng J, Wang C, Wang L, Wang H, Tian M, Ma L, Guo X, Xu B. Roles of the protein disulphide isomerases AccPDIA1 and AccPDIA3 in response to oxidant stress in Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2022; 31:10-23. [PMID: 34453759 DOI: 10.1111/imb.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Protein disulphide isomerase (PDI) plays an important role in a variety of physiological processes through its oxidoreductase activity and molecular chaperone activity. In this study, we cloned two PDI family members, AccPDIA1 and AccPDIA3, from Apis cerana cerana. AccPDIA1 and AccPDIA3 had typical sequence features of PDI family members and were constitutively expressed in A. cerana cerana. The expression levels of AccPDIA1 and AccPDIA3 were generally upregulated after treatment with a variety of environmental stress factors. Inhibition assays showed that E. coli expressing recombinant AccPDIA1 and AccPDIA3 proteins was more resistant to oxidative stress than control E. coli. In addition, silencing AccPDIA1 or AccPDIA3 in A. cerana cerana resulted in significant changes in the expression levels of several antioxidant-related genes as well as the enzymatic activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) and reduced the survival rate of A. cerana cerana under oxidative stress caused by high temperature. In conclusion, our results suggest that AccPDIA1 and AccPDIA3 may play important roles in the antioxidant activities of A. cerana cerana.
Collapse
Affiliation(s)
- G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - J Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - L Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - M Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - L Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
26
|
Iali W, Suleiman RK, El Ali B. Highly Efficient NHC‐Iridium(I) Catalyzed Disulfide Bond Forming Reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wissam Iali
- Chemistry Department King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| | - Rami K. Suleiman
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| | - Bassam El Ali
- Chemistry Department King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
- Center for Refining & Advanced Chemicals King Fahd University of Petroleum& Minerals Dhahran Saudi Arabia
| |
Collapse
|
27
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
28
|
Yao D, Arguez MA, He P, Bent AF, Song J. Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. MOLECULAR PLANT 2021; 14:2088-2103. [PMID: 34418551 PMCID: PMC9070964 DOI: 10.1016/j.molp.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 08/15/2021] [Indexed: 05/02/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification reversibly catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) and plays a key role in multiple cellular processes. The molecular mechanisms by which PARylation regulates innate immunity remain largely unknown in eukaryotes. Here we show that Arabidopsis UBC13A and UBC13B, the major drivers of lysine 63 (K63)-linked polyubiquitination, directly interact with PARPs/PARGs. Activation of pathogen-associated molecular pattern (PAMP)-triggered immunity promotes these interactions and enhances PARylation of UBC13. Both parp1 parp2 and ubc13a ubc13b mutants are compromised in immune responses with increased accumulation of total pathogenesis-related (PR) proteins but decreased accumulation of secreted PR proteins. Protein disulfide-isomerases (PDIs), essential components of endoplasmic reticulum quality control (ERQC) that ensure proper folding and maturation of proteins destined for secretion, complex with PARPs/PARGs and are PARylated upon PAMP perception. Significantly, PARylation of UBC13 regulates K63-linked ubiquitination of PDIs, which may further promote their disulfide isomerase activities for correct protein folding and subsequent secretion. Taken together, these results indicate that plant immunity is coordinately regulated by PARylation and K63-linked ubiquitination.
Collapse
Affiliation(s)
- Dongsheng Yao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Marcus A Arguez
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
29
|
Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC PLANT BIOLOGY 2021; 21:557. [PMID: 34814838 PMCID: PMC8609882 DOI: 10.1186/s12870-021-03325-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Arabidopsis protein disulfide isomerase 1 (AtPDI1) has been demonstrated to have disulfide isomerase activity and to be involved in the stress response. However, whether the anti-stress function is directly related to the activities of thiol-disulfide exchange remains to be elucidated. RESULTS In the present study, encoding sequences of AtPDI1 of wild-type (WT) and double-cysteine-mutants were transformed into an AtPDI1 knockdown Arabidopsis line (pdi), and homozygous transgenic plants named pdi-AtPDI1, pdi-AtPDI1m1 and pdi-AtPDI1m2 were obtained. Compared with the WT and pdi-AtPDI1, the respective germination ratios of pdi-AtPDI1m1 and pdi-AtPDI1m2 were significantly lower under abiotic stresses and exogenous ABA treatment, whereas the highest germination rate was obtained with AtPDI1 overexpression in the WT (WT- AtPDI1). The root length among different lines was consistent with the germination rate; a higher germination rate was observed with a longer root length. When seedlings were treated with salt, drought, cold and high temperature stresses, pdi-AtPDI1m1, pdi-AtPDI1m2 and pdi displayed lower survival rates than WT and AtPDI1 overexpression plants. The transcriptional levels of ABA-responsive genes and genes encoding ROS-quenching enzymes were lower in pdi-AtPDI1m1 and pdi-AtPDI1m2 than in pdi-AtPDI1. CONCLUSION Taken together, these results clearly suggest that the anti-stress function of AtPDI1 is directly related to the activity of disulfide isomerase.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
- Institute of Shandong River Wetlands, Jinan, Shandong, 271100, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Zhou Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Mengyu Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shizhong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Qinghua Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
30
|
Mikami R, Tsukagoshi S, Arai K. Abnormal Enhancement of Protein Disulfide Isomerase-like Activity of a Cyclic Diselenide Conjugated with a Basic Amino Acid by Inserting a Glycine Spacer. BIOLOGY 2021; 10:biology10111090. [PMID: 34827083 PMCID: PMC8615077 DOI: 10.3390/biology10111090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
In a previous study, we reported that (S)-1,2-diselenane-4-amine (1) catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of 1 by increasing its diselenide (Se–Se) reduction potential (E′°). In this study, to modulate the Se–Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between 1 and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and E′° values among 1, 1-Xaa, and 1-Gly-Xaa showed that the insertion of a Gly spacer into 1-Xaa either did not change or slightly reduced the PDI-like activity and the E′° values. Importantly, however, only 1-Gly-Arg deviated from this generality and showed obviously increased E°′ value and PDI-like activity compared to the corresponding compound with no Gly spacer (1-Arg); on the contrary, its catalytic activity was the highest among the diselenide compounds employed in this study, while this abnormal enhancement of the catalytic activity of 1-Gly-Arg could not be fully explained by the thermodynamics of the Se–Se bond and its association ability with protein substrates.
Collapse
|
31
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
32
|
Ko EJ, Kim H, Lee AR, Jeon KY, Kim A, Kim DH, Park CI, Choi YH, Kim S, Kim HS, Ock MS, Cha HJ. Proteome profile of spleen in rock bream (Oplegnathus fasciatus) naturally infected with rock bream iridovirus (RBIV). Genes Genomics 2021; 43:1259-1268. [PMID: 34427872 DOI: 10.1007/s13258-021-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rock bream iridovirus (RBIV) is one of the most dangerous pathogens that causes the highest mortality in the aquaculture of rock bream (Oplegnathus fasciatus). Even though RBIV infection leads to huge economic loss, proteome studies on RBIV-infected rock bream have not been conducted to provide information about the differential protein expression pattern by the host protection system. OBJECTIVE The purpose of this study was to investigate the protein expression patterns in spleens of rock bream olive after infection by RBIV or mixed infection by RBIV and bacteria. METHODS Depending on the infection intensity and sampling time point, fish were divided into five groups: uninfected healthy fish at week 0 as the control (0C), heavily infected fish at week 0 (0H), heavily mixed RBIV and bacterial infected fish at week 0 (0MH), uninfected healthy fish at week 3 (3C), and lightly infected fish at week 3 (3L). Proteins were extracted from the spleens of infected rock bream. We used 2-DE analysis with LC-MS/MS to investigate proteome changes in infected rock bream. RESULTS The results of the LC-MS/MS analyses showed different protein expression profiles after infection. Proteins related to oxygen transport and energy generation, such as hemoglobin, beta-globin, and ATP synthase, were mostly expressed in the infected spleen. Whereas proteins involved in structure and cell movement, such as tubulin, myosin, actin binding proteins, and intermediate filament proteins, were down-regulated in the infected spleens. The protein expression profiles between infection by RBIV and mixed infection by RBIV and bacteria showed similar patterns. CONCLUSIONS Our results indicated that infection by RBIV or mixed infection by RBIV and bacteria triggered energy generation and oxygen-transport, but cell migration and constructional changes in the spleen were extremely decreased.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hyunsu Kim
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - A-Reum Lee
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kyung-Yoon Jeon
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Ahran Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
33
|
Dudek J, Kutschka I, Maack C. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxid Redox Signal 2021; 35:163-181. [PMID: 33121253 DOI: 10.1089/ars.2020.8201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Cardiovascular stem cells are important for regeneration and repair of damaged tissue. Recent Advances: Pluripotent stem cells have a unique metabolism, which is adopted for their energetic and biosynthetic demand as rapidly proliferating cells. Stem cell differentiation requires an exceptional metabolic flexibility allowing for metabolic remodeling between glycolysis and oxidative phosphorylation. Critical Issues: Respiration is associated with the generation of reactive oxygen species (ROS) by the mitochondrial respiratory chain. But also the membrane-bound protein nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) contributes to ROS levels. ROS not only play a significant role in stem cell differentiation and tissue renewal but also cause senescence and contribute to tissue aging. Future Directions: For utilization of stem cells in therapeutic approaches, a deep understanding of the molecular mechanisms how metabolism and the cellular redox state regulate stem cell differentiation is required. Modulating the redox state of stem cells using antioxidative agents may be suitable to enhance activity of endothelial progenitor cells. Antioxid. Redox Signal. 35, 163-181.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Subedi P, Paxman JJ, Wang G, Hor L, Hong Y, Verderosa AD, Whitten AE, Panjikar S, Santos-Martin CF, Martin JL, Totsika M, Heras B. Salmonella enterica BcfH Is a Trimeric Thioredoxin-Like Bifunctional Enzyme with Both Thiol Oxidase and Disulfide Isomerase Activities. Antioxid Redox Signal 2021; 35:21-39. [PMID: 33607928 DOI: 10.1089/ars.2020.8218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aims: Thioredoxin (TRX)-fold proteins are ubiquitous in nature. This redox scaffold has evolved to enable a variety of functions, including redox regulation, protein folding, and oxidative stress defense. In bacteria, the TRX-like disulfide bond (Dsb) family mediates the oxidative folding of multiple proteins required for fitness and pathogenic potential. Conventionally, Dsb proteins have specific redox functions with monomeric and dimeric Dsbs exclusively catalyzing thiol oxidation and disulfide isomerization, respectively. This contrasts with the eukaryotic disulfide forming machinery where the modular TRX protein disulfide isomerase (PDI) mediates thiol oxidation and disulfide reshuffling. In this study, we identified and structurally and biochemically characterized a novel Dsb-like protein from Salmonella enterica termed bovine colonization factor protein H (BcfH) and defined its role in virulence. Results: In the conserved bovine colonization factor (bcf) fimbrial operon, the Dsb-like enzyme BcfH forms a trimeric structure, exceptionally uncommon among the large and evolutionary conserved TRX superfamily. This protein also displays very unusual catalytic redox centers, including an unwound α-helix holding the redox active site and a trans-proline instead of the conserved cis-proline active site loop. Remarkably, BcfH displays both thiol oxidase and disulfide isomerase activities contributing to Salmonella fimbrial biogenesis. Innovation and Conclusion: Typically, oligomerization of bacterial Dsb proteins modulates their redox function, with monomeric and dimeric Dsbs mediating thiol oxidation and disulfide isomerization, respectively. This study demonstrates a further structural and functional malleability in the TRX-fold protein family. BcfH trimeric architecture and unconventional catalytic sites permit multiple redox functions emulating in bacteria the eukaryotic PDI dual oxidoreductase activity. Antioxid. Redox Signal. 35, 21-39.
Collapse
Affiliation(s)
- Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Anthony D Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Santosh Panjikar
- Macromolecular Crystallography, Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Carlos F Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jennifer L Martin
- Griffith Institute for Drug Discovery, Brisbane Innovation Park, Nathan, Australia.,Vice-Chancellor's Unit, University of Wollongong, Wollongong, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
35
|
Yang YX, Li P, Wang P, Zhu BT. 17β-Estradiol-Induced Conformational Changes of Human Microsomal Triglyceride Transfer Protein: A Computational Molecular Modelling Study. Cells 2021; 10:cells10071566. [PMID: 34206252 PMCID: PMC8304645 DOI: 10.3390/cells10071566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Human microsomal triglyceride transfer protein (hMTP) plays an essential role in the assembly of apoB-containing lipoproteins, and has become an important drug target for the treatment of several disease states, such as abetalipoproteinemia, fat malabsorption and familial hypercholesterolemia. hMTP is a heterodimer composed of a larger hMTPα subunit and a smaller hMTPβ subunit (namely, protein disulfide isomerase, hPDI). hPDI can interact with 17β-estradiol (E2), an endogenous female sex hormone. It has been reported that E2 can significantly reduce the blood levels of low-density lipoprotein, cholesterol and triglyceride, and modulate liver lipid metabolism in vivo. However, some of the estrogen’s actions on lipid metabolism are not associated with estrogen receptors (ER), and the exact mechanism underlying estrogen’s ER-independent lipid-modulating action is still not clear at present. In this study, the potential influence of E2 on the stability of the hMTP complex is investigated by jointly using multiple molecular dynamics analyses based on available experimental structures. The molecular dynamics analyses indicate that the hMTP complex in the presence of E2 has reduced interface contacts and surface areas. A steered molecular dynamics analysis shows that the forces required to separate the two subunits (namely, hPDI and hMTPα subunit) of the hMTP complex in the absence of E2 are significantly higher than the forces required to separate the complex in which its hPDI is already bound with E2. E2 makes the interface between hMTPα and hPDI subunits more flexible and less stable. The results of this study suggest that E2-induced conformational changes of the hMTP complex might be a novel mechanism partly accounting for the ER-independent lipid-modulating effect of E2.
Collapse
Affiliation(s)
- Yong-Xiao Yang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
| | - Peng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Bao-Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; (Y.-X.Y.); (P.L.); (P.W.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-84273851
| |
Collapse
|
36
|
Xian L, Long Y, Yang M, Chen Z, Wu J, Liu X, Wang L. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110859. [PMID: 33775365 DOI: 10.1016/j.plantsci.2021.110859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Autotetraploid rice, which is developed through chromosome set doubling using diploid rice, produces high-quality kernels that are rich in storage proteins. However, little information is available about the content of different proteins in autotetraploid rice and their proteomic analysis. The dynamic changes in four storage proteins, namely, albumin, globulin, prolamin, and glutelin, were analyzed in the endosperm of autotetraploid rice (AJNT-4x) and in that of its diploid counterpart (AJNT-2x) for comparison. The contents of the four proteins were all higher during endosperm development in AJNT-4x than in AJNT-2x, but their change and composition were almost the same in the two materials. Then, iTRAQ was employed to analyze the glutelin profiles of AJNT-4x and AJNT-2x at 10 DAF, 15 DAF, and 20 DAF. A total of 1326 proteins were identified in AJNT-4x and AJNT-2x using high-throughput LC-MS/MS. Among the 1326 identified proteins, there were 362 DEPs in AJNT-4x compared with AJNT-2x and 372 DEPs between different developmental stages in AJNT-4x. Eight important upregulated proteins were identified by qRT-PCR, including B8AM24, B8ARJ0, B8AQM6, A2ZCE6, and P37833. Among them, B8AM24 and B8ARJ0 were related to the lysine biosynthesis process. GO enrichment analysis revealed that the critical functions of DEPs exhibited little overlap between the 10, 15, and 20 DAF groups. Endosperm glutelin accumulation was regulated mainly by different DEPs during the early stage, and 15 DAF was a critical regulating point for glutelin accumulation. KEGG pathway analysis showed that ribosomal proteins were significantly higher in AJNT-4x than in AJNT-2x at 10 DAF, and protein processing, biosynthesis, and metabolism of amino acids were higher and more active in AJNT-4x at 15 DAF, while the peroxisome was richer in AJNT-4x at 20 DAF. The PPI network showed that ribosomal proteins gradually decreased with increasing endosperm development. These results provide new insights into dynamic glutelin expression differences during endosperm development in autotetraploid rice, which will aid in the development of rice cultivars with increased yield and improved grain nutritional quality.
Collapse
Affiliation(s)
- Lin Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanxi Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Meng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
37
|
Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: Metabolomic and proteomic studies. Microbiol Res 2021; 249:126770. [PMID: 33932742 DOI: 10.1016/j.micres.2021.126770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022]
Abstract
Trichoderma species are well known for producing various secondary metabolites in response to different fungal pathogens. This paper reports the effects of the metabolites produced during one-day cultivation of Trichoderma harzianum on the growth and development of the popular pathogen Fusarium culmorum. Inhibition of the growth of the pathogen and production of secondary metabolites including zearalenone was observed on Petri dishes. The presence of proteins such as cytochrome c oxidase subunit 4, glutathione-independent glyoxalase HSP31, and putative peroxiredoxin pmp20 in the extract-treated culture indicated oxidative stress, which was confirmed by the presence of a higher amount of catalase and dismutase in the later hours of the culture. A larger amount of enolase and glyceraldehyde 3-phosphate dehydrogenase resulted in faster growth, and the overexpression of stress protein and Woronin body major protein indicated the activation of defense mechanisms. In addition, a cardinal reduction in major mycotoxin production was noted.
Collapse
|
38
|
Gao X, Wang Y, Lu F, Chen X, Yang D, Cao Y, Zhang W, Chen J, Zheng L, Wang G, Fu M, Ma L, Song Y, Zhan Q. Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. J Extracell Vesicles 2021; 10:e12060. [PMID: 33732415 PMCID: PMC7944388 DOI: 10.1002/jev2.12060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 02/05/2023] Open
Abstract
Cachexia, characterized by loss of skeletal muscle mass and function, is estimated to inflict the majority of patients with oesophageal squamous cell carcinoma (ESCC) and associated with their poor prognosis. However, its underlying mechanisms remain elusive. Here, we developed an ESCC‐induced cachexia mouse model using human xenograft ESCC cell lines and found that ESCC‐derived extracellular vesicles (EVs) containing prolyl 4‐hydroxylase subunit beta (P4HB) induced apoptosis of skeletal muscle cells. We further identified that P4HB promoted apoptotic response through activating ubiquitin‐dependent proteolytic pathway and regulated the stability of phosphoglycerate dehydrogenase (PHGDH) and subsequent antiapoptotic protein Bcl‐2. Additionally, we proved that the P4HB inhibitor, CCF642, not only rescued apoptosis of muscle cells in vitro, but also prevented body weight loss and muscle wasting in ESCC‐induced cachexia mouse model. Overall, these findings demonstrate a novel pathway for ESCC‐induced muscle wasting and advocate for the development of P4HB as a potential intervention target for cachexia in patients with ESCC.
Collapse
Affiliation(s)
- Xiaohan Gao
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Fang Lu
- Department of Ophthalmology West China Hospital Sichuan University Chengdu China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| | - Leilei Zheng
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing) Laboratory of Molecular Oncology Peking University Cancer Hospital & Institute Beijing China
| |
Collapse
|
39
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
40
|
Genome-Wide Identification and Expression Profiling of the PDI Gene Family Reveals Their Probable Involvement in Abiotic Stress Tolerance in Tomato ( Solanum Lycopersicum L.). Genes (Basel) 2020; 12:genes12010023. [PMID: 33375673 PMCID: PMC7824348 DOI: 10.3390/genes12010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.
Collapse
|
41
|
Meng Z, Zhao Y, Liu L, Du X. Genome-wide characterization of the PDI gene family in Medicago truncatula and their roles in response to endoplasmic reticulum stress. Genome 2020; 64:599-614. [PMID: 33306442 DOI: 10.1139/gen-2020-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein disulfide isomerases (PDIs) are pivotal protein folding catalysts in the endoplasmic reticulum (ER) through formation of disulfide bond, isomerization, and inhibition of misfolded protein aggregation. When protein folding capacity is overwhelmed by the demands during transitions between growth phases or under environmental changes, the accumulation of unfolded or misfolded proteins in the ER triggers ER stress. However, little is known about the PDI gene family in the model legume Medicago truncatula, especially the responses to ER stress. Therefore, we identified 17 putative PDI genes from the genome of M. truncatula and present their gene and protein structures, phylogenetic relationships, chromosomal distributions, and synteny analysis with the orthologs in four other eudicot species, including Arabidopsis thaliana, Glycine max, Brassica rapa, and Vitis vinifera. Moreover, expression profiles derived from transcriptome data showed distinct expression patterns of MtPDI genes among plant organs, while real-time quantitative PCR analysis and data from the proteome revealed the potential roles of MtPDI genes in response to ER stress. Our study provides a foundation for further investigations of the biological roles of PDI genes in Medicago, especially their roles in response to ER stress.
Collapse
Affiliation(s)
- Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yuwei Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lijie Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
42
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
43
|
Tsukagoshi S, Mikami R, Arai K. Basic Amino Acid Conjugates of 1,2-Diselenan-4-amine with Protein Disulfide Isomerase-like Functions as a Manipulator of Protein Quality Control. Chem Asian J 2020; 15:2646-2652. [PMID: 32662226 DOI: 10.1002/asia.202000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 11/09/2022]
Abstract
Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)-relating reactions (i. e., SS-formation, SS-cleavage, and SS-isomerization). PDI controls protein quality by suppressing protein aggregation, as well as functions as an oxidative folding catalyst. Following the amino acid sequence of the active center in PDI, basic amino acid conjugates of 1,2-diselenan-4-amine (1), which show oxidoreductase- and isomerase-like activities for SS-relating reactions, were designed as a novel PDI model compound. By conjugating the amino acids, the diselenide reduction potential of compound 1 was significantly increased, causing improvement of the catalytic activities for all SS-relating reactions. Furthermore, these compounds, especially histidine-conjugated one, remarkably suppressed protein aggregation even at low concertation (0.3 mM∼). Thus, it was demonstrated that the conjugation of basic amino acids into 1 simultaneously achieves the enhancement of the redox reactivity and the capability to suppress protein aggregation.
Collapse
Affiliation(s)
- Shunsuke Tsukagoshi
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Rumi Mikami
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Kenta Arai
- Department of Chemistry School of Science, Tokai University, Kitalaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
44
|
The Mechanical Power of Titin Folding. Cell Rep 2020; 27:1836-1847.e4. [PMID: 31067467 PMCID: PMC6937205 DOI: 10.1016/j.celrep.2019.04.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/09/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The delivery of mechanical power, a crucial component of animal motion, is constrained by the universal compromise between the force and the velocity of its constituent molecular systems. While the mechanisms of force generation have been studied at the single molecular motor level, there is little understanding of the magnitude of power that can be generated by folding proteins. Here, we use single-molecule force spectroscopy techniques to measure the force-velocity relation of folding titin domains that contain single internal disulfide bonds, a common feature throughout the titin I-band. We find that formation of the disulfide regulates the peak power output of protein folding in an all-or-none manner, providing at 6.0 pN, for example, a boost from 0 to 6,000 zW upon oxidation. This mechanism of power generation from protein folding is of great importance for muscle, where titin domains may unfold and refold with each extension and contraction of the sarcomere. Eckels et al. use single-molecule magnetic tweezers to simultaneously probe the folding dynamics of titin Ig domains and monitor the redox status of single disulfides within the Ig fold. Oxidation of the disulfide bond greatly increases both the folding force and the magnitude of power delivered by protein folding.
Collapse
|
45
|
Chen X, Li H, Fan X, Zhao C, Ye K, Zhao Z, Hu L, Ma H, Wang H, Fang Z. Protein Palmitoylation Regulates Cell Survival by Modulating XBP1 Activity in Glioblastoma Multiforme. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:518-530. [PMID: 33024813 PMCID: PMC7525067 DOI: 10.1016/j.omto.2020.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023]
Abstract
Glioblastoma multiforme (GBM) almost invariably acquires an invasive phenotype, resulting in limited therapeutic options. Protein palmitoylation markedly affects tumorigenesis and malignant progression in GBM. The role of protein palmitoylation in GBM, however, has not been systematically reported. This study aimed to investigate the effect of protein palmitoylation on GBM cell survival and the cell cycle. In this study, most palmitoyltransferases were upregulated in GBM and its cell lines, and protein palmitoylation participated in signaling pathways controlling cell survival and the GBM cell cycle. Inhibition of protein palmitoylation with substrate-analog inhibitors, that is, 2-bromopalmitate, cerulenin, and tunicamycin, induced G2 cell cycle arrest and cell death in GBM cells through enhanced endoplasmic reticulum (ER) stress. These effects are primarily attributed to the palmitoylation inhibitors activating pro-apoptotic pathways and ER stress signals. Further analysis revealed was the accumulation of SUMOylated XBP1 (X-box binding protein 1) and its transcriptional repression, along with a reduction in XBP1 palmitoylation. Taken together, the present results indicate that protein palmitoylation plays an important role in the survival of GBM cells, further providing a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Xueran Chen, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| | - Hao Li
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Xiaoqing Fan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, Anhui 230001, China
- Department of Anesthesiology, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui 230001, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- School of Life Sciences, University of Science and Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China
| | - Huihui Ma
- Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 218, JiXi Road, Hefei, Anhui 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, ShuShan Hu Road, Hefei, Anhui 230031, China
- Corresponding author: Zhiyou Fang, Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui 230031, China.
| |
Collapse
|
46
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
47
|
Wu J, Wang Y, Wei Y, Xu Z, Tan X, Wu Z, Zheng J, Liu GD, Cao Y, Xue C. Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin. Virol J 2020; 17:55. [PMID: 32316996 PMCID: PMC7175539 DOI: 10.1186/s12985-020-01325-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hemagglutinin (HA), as the surface immunogenic protein, is the most important component of influenza viruses. Previous studies showed that the stability of HA was significant for HA's immunogenicity, and many efforts have been made to stabilize the expressed HA proteins. METHODS In this study, the protein disulfide isomerases (PDIs) were investigated for the ability to improve the stability of HA protein. Two members of the PDIs family, PDI and ERp57, were over-expressed or down-expressed in 293 T cells. The expression of H3 HA and PDIs were investigated by real-time qPCR, western-blot, immunofluorescence assay, and flow cytometry. The stability of HA was investigated by western-blot under non-reducing condition. Moreover, BALB/c mice were immunized subcutaneously twice with the vaccine that contained HA proteins from the ERp57-overexpressed and conventional 293 T cells respectively to investigate the impact of ERp57 on the immunogenicity of H3N2 HA. RESULTS The percentage of the disulfide-bonded HA trimers increased significantly in the PDIs-overexpressed 293 T cells, and ERp57 was more valid to the stability of HA than PDI. The knockdown of ERp57 by small interfering RNA significantly decreased the percentage of the disulfide-bonded HA trimers. HA proteins from ERp57-overexpressed 293 T cells stimulated the mice to generate significantly higher HA-specific IgG against H1N1 and H3N2 viruses than those from the conventional cells. The mice receiving H3 HA from ERp57-overexpressed 293 T cells showed the better resistance against H1N1 viruses and the higher survival rate than the mice receiving H3 HA from the conventional cells. CONCLUSION ERp57 could improve the stability and immunogenicity of H3N2 HA.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.,Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Yang Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ying Wei
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Xin Tan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhihui Wu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Jing Zheng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12050 167th PL NE, Redmond, WA, 98052, USA
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
48
|
Hu Q, Huang K, Tao C, Zhu X. Protein disulphide isomerase can predict the clinical prognostic value and contribute to malignant progression in gliomas. J Cell Mol Med 2020; 24:5888-5900. [PMID: 32301283 PMCID: PMC7214159 DOI: 10.1111/jcmm.15264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence from structural and functional studies has indicated that protein disulphide isomerase (PDI) has a critical role in the proliferation, survival and metastasis of several types of cancer. However, the molecular mechanisms through which PDI contributes to glioma remain unclear. Here, we aimed to investigate whether the differential expression of 17 PDI family members was closely related to the different clinicopathological features in gliomas from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas data sets. Additionally, four subgroups of gliomas (cluster 1/2/3/4) were identified based on consensus clustering of the PDI gene family. These findings not only demonstrated that a poorer prognosis, higher WHO grade, lower frequency of isocitrate dehydrogenase mutation and higher 1p/19q non‐codeletion status were significantly correlated with cluster 4 compared with the other clusters, but also indicated that the malignant progression of glioma was closely correlated with the expression of PDI family members. Moreover, we also constructed an independent prognostic marker that can predict the clinicopathological features of gliomas. Overall, the results indicated that PDI family members may serve as possible diagnostic markers in gliomas.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
49
|
Linden LDS, Bustamante-Filho IC, Souza APB, Lopes TN, Silva AFT, Tomé LM, Timmers LFMS, Santos SI, Neves AP. Structural modelling of the equine protein disulphide isomerase A1 and its quantification in the epididymis and seminal plasma. Andrologia 2020; 52:e13530. [DOI: 10.1111/and.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liana de Salles Linden
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | | | | | - Tayná Nauê Lopes
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | - Luise Marcon Tomé
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | | | - Adriana Pires Neves
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Universidade Federal do Pampa (UNIPAMPA) Dom Pedrito Brazil
| |
Collapse
|
50
|
Kamarehei M, Pejman S, Kaboudanian Ardestani S, Zahednasab H, Firouzi M, Harirchian MH. Inhibition of protein disulfide isomerase has neuroprotective effects in a mouse model of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 82:106286. [PMID: 32172212 DOI: 10.1016/j.intimp.2020.106286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 02/02/2020] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress is strictly linked to neuroinflammation and involves in the development of neurodegenerative disorders. Protein disulfide isomerase (PDI) is an enzyme that catalyzes formation and isomerization of disulfide bonds and also acts as a chaperone that survives the cells against cell death by removal of misfolded proteins. Our previous work revealed that PDI is explicitly upregulated in response to myelin oligodendrocyte glycoprotein (MOG)-induced ER stress in the brain of experimental autoimmune encephalomyelitis (EAE) mice. The significance of overexpression of PDI in the apoptosis of neural cells prompted us to study the effect of CCF642, efficient inhibitor of PDI, in the recovery of EAE clinical symptoms. Using this in vivo model, we characterized the ability of CCF642 to decrease the expression of ER stress markers and neuroinflammation in the hippocampus of EAE mice. Our observations suggested that CCF642 administration attenuates EAE clinical symptomsand the expression of ER stress-related proteins. Further, it suppressed the inflammatory infiltration of CD4 + T cells and the activation of hippocampus-resident microglia and Th17 cells. We reported here that the inhibition of PDI protected EAE mice against neuronal apoptosis induced by prolonged ER stress and resulted in neuroprotection.
Collapse
Affiliation(s)
- Maryam Kamarehei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sina Pejman
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Masoumeh Firouzi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Harirchian
- Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|