1
|
Hernández-Zavala A, Cortés-Camacho F, Palma-Lara I, Godínez-Aguilar R, Espinosa AM, Pérez-Durán J, Villanueva-Ocampo P, Ugarte-Briones C, Serrano-Bello CA, Sánchez-Santiago PJ, Bonilla-Delgado J, Yáñez-López MA, Victoria-Acosta G, López-Ornelas A, García Alonso-Themann P, Moreno J, Palacios-Reyes C. Two Novel FAM20C Variants in A Family with Raine Syndrome. Genes (Basel) 2020; 11:genes11020222. [PMID: 32093234 PMCID: PMC7073523 DOI: 10.3390/genes11020222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Two siblings from a Mexican family who carried lethal Raine syndrome are presented. A newborn term male (case 1) and his 21 gestational week brother (case 2), with a similar osteosclerotic pattern: generalized osteosclerosis, which is more evident in facial bones and cranial base. Prenatal findings at 21 weeks and histopathological features for case 2 are described. A novel combination of biallelic FAM20C pathogenic variants were detected, a maternal cytosine duplication at position 456 and a paternal deletion of a cytosine in position 474 in exon 1, which change the reading frame with a premature termination at codon 207 and 185 respectively. These changes are in concordance with a negative detection of the protein in liver and kidney as shown in case 2. Necropsy showed absence of pancreatic Langerhans Islets, which are reported here for the first time. Corpus callosum absence is added to the few reported cases of brain defects in Raine syndrome. This report shows two new FAM20C variants not described previously, and negative protein detection in the liver and the kidney. We highlight that lethal Raine syndrome is well defined as early as 21 weeks, including mineralization defects and craniofacial features. Pancreas and brain defects found here in FAM20C deficiency extend the functional spectrum of this protein to previously unknown organs.
Collapse
Affiliation(s)
- Araceli Hernández-Zavala
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Fernando Cortés-Camacho
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Icela Palma-Lara
- Laboratory of Cellular and Molecular Morphology, Section of Postgraduate Studies and Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico; (A.H.-Z.); (F.C.-C.); (I.P.-L.)
| | - Ricardo Godínez-Aguilar
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Ana María Espinosa
- Service of Clinical Pharmacology, Hospital General de México, Dr. Balmis 148, Doctores, Cuauhtémoc, Mexico City 06720, Mexico;
| | - Javier Pérez-Durán
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - Patricia Villanueva-Ocampo
- Deparment of Ginecology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Carlos Ugarte-Briones
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Carlos Alberto Serrano-Bello
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - Paula Jesús Sánchez-Santiago
- Department of Pathology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (C.U.-B.); (C.A.S.-B.); (P.J.S.-S.)
| | - José Bonilla-Delgado
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Marco Antonio Yáñez-López
- Department of Radiology & Imagenology, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico;
| | - Georgina Victoria-Acosta
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Adolfo López-Ornelas
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Patricia García Alonso-Themann
- National Institute of Perinatology, Calle Montes Urales 800, Lomas - Virreyes, Lomas de Chapultepec IV Section, Miguel Hidalgo, Mexico City 11000, Mexico; (J.P.-D.); (P.G.A.-T.)
| | - José Moreno
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
| | - Carmen Palacios-Reyes
- Direction and Division of Research, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, Mexico City 07760, Mexico; (R.G.-A.); (J.B.-D.); (G.V.-A.); (A.L.-O.); (J.M.)
- Correspondence:
| |
Collapse
|
2
|
Zhang H, Zhu Q, Cui J, Wang Y, Chen MJ, Guo X, Tagliabracci VS, Dixon JE, Xiao J. Structure and evolution of the Fam20 kinases. Nat Commun 2018; 9:1218. [PMID: 29572475 PMCID: PMC5865150 DOI: 10.1038/s41467-018-03615-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 01/04/2023] Open
Abstract
The Fam20 proteins are novel kinases that phosphorylate secreted proteins and proteoglycans. Fam20C phosphorylates hundreds of secreted proteins and is activated by the pseudokinase Fam20A. Fam20B phosphorylates a xylose residue to regulate proteoglycan synthesis. Despite these wide-ranging and important functions, the molecular and structural basis for the regulation and substrate specificity of these kinases are unknown. Here we report molecular characterizations of all three Fam20 kinases, and show that Fam20C is activated by the formation of an evolutionarily conserved homodimer or heterodimer with Fam20A. Fam20B has a unique active site for recognizing Galβ1-4Xylβ1, the initiator disaccharide within the tetrasaccharide linker region of proteoglycans. We further show that in animals the monomeric Fam20B preceded the appearance of the dimeric Fam20C, and the dimerization trait of Fam20C emerged concomitantly with a change in substrate specificity. Our results provide comprehensive structural, biochemical, and evolutionary insights into the function of the Fam20 kinases.
Collapse
Affiliation(s)
- Hui Zhang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Qinyu Zhu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Jixin Cui
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yuxin Wang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Mark J Chen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38015, USA
| | - Xing Guo
- The Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Abstract
Mutations in the Family with sequence similarity (FAM) 20 gene family are associated with mineralized tissue phenotypes in humans. Among these genes, FAM20A mutations are associated with Amelogenesis Imperfecta (AI) with gingival hyperplasia and nephrocalcinosis, while FAM20C mutations cause Raine syndrome, exhibiting bone and craniofacial/dental abnormalities. Although it has been demonstrated that Raine syndrome associated-FAM20C mutants prevented FAM20C kinase activity and secretion, overexpression of the catalytically inactive D478A FAM20C mutant was detected in both cell extracts and the media. This suggests that FAM20C secretion doesn’t require its kinase activity, and that another molecule(s) may control the secretion. In this study, we found that extracellular FAM20C localization was increased when wild-type (WT), but not AI-forms of FAM20A was co-transfected. On the other hand, extracellular FAM20C was absent in the conditioned media of mouse embryonic fibroblasts (MEFs) derived from Fam20a knock-out (KO) mouse, while it was detected in the media from WT MEFs. We also showed that cells with the conditioned media of Fam20a WT MEFs mineralized, but those with the conditioned media of KO MEFs failed to mineralize in vitro. Our data thus demonstrate that FAM20A controls FAM20C localization that may assist in the extracellular function of FAM20C in mineralized tissues.
Collapse
|