1
|
Mylemans B, Noguchi H, Deridder E, Lescrinier E, Tame JRH, Voet ARD. Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein. Protein Sci 2020; 29:2375-2386. [PMID: 33006397 DOI: 10.1002/pro.3961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
The β-propeller fold is adopted by a sequentially diverse family of repeat proteins with apparent rotational symmetry. While the structure is mostly stabilized by hydrophobic interactions, an additional stabilization is provided by hydrogen bonds between the N-and C-termini, which are almost invariably part of the same β-sheet. This feature is often referred to as the "Velcro" closure. The positioning of the termini within a blade is variable and depends on the protein family. In order to investigate the influence of this location on protein structure, folding and stability, we created different circular permutants, and a circularized version, of the designer propeller protein named Pizza. This protein is perfectly symmetrical, possessing six identical repeats. While all mutants adopt the same structure, the proteins lacking the "Velcro" closure were found to be significantly less resistant to thermal and chemical denaturation. This could explain why such proteins are rarely observed in nature. Interestingly the most common "Velcro" configuration for this protein family was not the most stable among the Pizza variants tested. The circularized version shows dramatically improved stability, which could have implications for future applications.
Collapse
Affiliation(s)
| | | | - Els Deridder
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
2
|
Paladin L, Necci M, Piovesan D, Mier P, Andrade-Navarro MA, Tosatto SCE. A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication. J Struct Biol 2020; 212:107608. [PMID: 32896658 DOI: 10.1016/j.jsb.2020.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/30/2022]
Abstract
Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the two definitions (structural units and exons) are visualized in a single matrix, the "repeat/exon plot". An analysis of different repeat protein families, including the solenoids Leucine-Rich, Ankyrin, Pumilio, HEAT repeats and the β propellers Kelch-like, WD40 and RCC1, shows different behaviors, illustrated here through examples. For each example, the analysis of the exon mapping in homologous proteins supports the conservation of their exon patterns. We propose that when a clear-cut relationship between exon and structural boundaries can be identified, it is possible to infer a specific "evolutionary pattern" which may improve TRPs detection and classification.
Collapse
Affiliation(s)
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padova, Italy
| | | | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University of Mainz, Germany
| | | | | |
Collapse
|
3
|
Maurice P, Baud S, Bocharova OV, Bocharov EV, Kuznetsov AS, Kawecki C, Bocquet O, Romier B, Gorisse L, Ghirardi M, Duca L, Blaise S, Martiny L, Dauchez M, Efremov RG, Debelle L. New Insights into Molecular Organization of Human Neuraminidase-1: Transmembrane Topology and Dimerization Ability. Sci Rep 2016; 6:38363. [PMID: 27917893 PMCID: PMC5137157 DOI: 10.1038/srep38363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139-159 (TM1) and 316-333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.
Collapse
Affiliation(s)
- Pascal Maurice
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Stéphanie Baud
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France.,Plateau de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, URCA, Reims, France
| | - Olga V Bocharova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Eduard V Bocharov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey S Kuznetsov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Charlotte Kawecki
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Olivier Bocquet
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Beatrice Romier
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laetitia Gorisse
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Maxime Ghirardi
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Martiny
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Manuel Dauchez
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France.,Plateau de Modélisation Moléculaire Multi-échelle, UFR Sciences Exactes et Naturelles, URCA, Reims, France
| | - Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - Laurent Debelle
- Laboratoire Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|