1
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
De Lemos D, Soulet AL, Morales V, Berge M, Polard P, Johnston C. Competence induction of homologous recombination genes protects pneumococcal cells from genotoxic stress. mBio 2024:e0314224. [PMID: 39611665 DOI: 10.1128/mbio.03142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Homologous recombination (HR) is a universally conserved mechanism of DNA strand exchange between homologous sequences, driven in bacteria by the RecA recombinase. HR is key for the maintenance of bacterial genomes via replication fork restart and DNA repair, as well as for their plasticity via the widespread mechanism of natural transformation. Transformation involves the capture and internalization of exogenous DNA in the form of single strands, followed by HR-mediated chromosomal integration. In the human pathogen Streptococcus pneumoniae, transformation occurs during a transient, stress-induced differentiation state called competence. RecA and its partner DNA branch migration translocase RadA are both well conserved and cooperate in HR during transformation and certain genome maintenance pathways. Both recA and radA genes are basally expressed and transcriptionally induced during competence. In this study, we explored the importance of competence induction of recA and radA in transformation and genome maintenance. We confirmed that competence induction of recA, but not radA, was important for transformation. In contrast, we uncovered that the competence induction of both genes was required for optimal tolerance faced with transient exposure to the lethal genotoxic agent methyl methanesulfonate. However, this was not the case for another DNA-damaging agent, norfloxacin. These results show that competence induction of HR effectors is important for the increased tolerance to genotoxic stress provided to competent pneumococci. This reinforces the finding that pneumococcal competence is a stress-sensing mechanism, transiently increasing the expression of some genes not to optimize transformation but to improve survival faced with specific lethal stresses.IMPORTANCEHomologous recombination (HR) is a mechanism of DNA strand exchange important for both the maintenance and plasticity of bacterial genomes. Bacterial HR is driven by the recombinase RecA along with many accessory partner proteins, which define multiple dedicated pathways crucial to genome biology. Thus, a main mechanism of genome plasticity in bacteria is natural genetic transformation, which involves uptake and chromosomal integration of exogenous DNA via HR. In the human pathogen Streptococcus pneumoniae, transformation occurs during a transient, stress-induced physiological state called competence. RecA and the helicase RadA are key for both genome maintenance and transformation, and both are over-produced during competence. Here, we explore the importance of this over-production for transformation and genome maintenance, quantified by tolerance to genotoxic stress. While over-production of RecA was important for both processes, over-production of RadA was required only for genotoxic stress tolerance. This highlights the importance of competence as a stress-responsive mechanism, with induction of HR genes important for genotoxic stress tolerance.
Collapse
Affiliation(s)
- David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Mathieu Berge
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | - Calum Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), UMR5100, Centre de Biologie Intégrative (CBI), Centre Nationale de la Recherche Scientifique (CNRS), Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| |
Collapse
|
3
|
Cory MB, Li A, Hurley CM, Carman PJ, Pumroy RA, Hostetler ZM, Perez RM, Venkatesh Y, Li X, Gupta K, Petersson EJ, Kohli RM. The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation. Nat Struct Mol Biol 2024; 31:1522-1531. [PMID: 38755298 PMCID: PMC11521096 DOI: 10.1038/s41594-024-01317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The bacterial SOS response plays a key role in adaptation to DNA damage, including genomic stress caused by antibiotics. SOS induction begins when activated RecA*, an oligomeric nucleoprotein filament that forms on single-stranded DNA, binds to and stimulates autoproteolysis of the repressor LexA. Here, we present the structure of the complete Escherichia coli SOS signal complex, constituting full-length LexA bound to RecA*. We uncover an extensive interface unexpectedly including the LexA DNA-binding domain, providing a new molecular rationale for ordered SOS gene induction. We further find that the interface involves three RecA subunits, with a single residue in the central engaged subunit acting as a molecular key, inserting into an allosteric binding pocket to induce LexA cleavage. Given the pro-mutagenic nature of SOS activation, our structural and mechanistic insights provide a foundation for developing new therapeutics to slow the evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Michael B Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina M Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Carman
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth A Pumroy
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xinning Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rahul M Kohli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Dumont A, Mendiboure N, Savocco J, Anani L, Moreau P, Thierry A, Modolo L, Jost D, Piazza A. Mechanism of homology search expansion during recombinational DNA break repair in Saccharomyces cerevisiae. Mol Cell 2024; 84:3237-3253.e6. [PMID: 39178861 DOI: 10.1016/j.molcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.
Collapse
Affiliation(s)
- Agnès Dumont
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Nicolas Mendiboure
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Jérôme Savocco
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Loqmen Anani
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Pierrick Moreau
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Agnès Thierry
- Unité Régulation spatiale des génomes, Institut Pasteur, CNRS UMR3525, 75015 Paris, France
| | - Laurent Modolo
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Daniel Jost
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France
| | - Aurèle Piazza
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR5239, Laboratoire de Biologie et Modélisation de la Cellule, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
5
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
6
|
Lorentzen ØM, Bleis C, Abel S. A comparative genomic and phenotypic study of Vibrio cholerae model strains using hybrid sequencing. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001502. [PMID: 39311857 PMCID: PMC11420891 DOI: 10.1099/mic.0.001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used Vibrio cholerae model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced V. cholerae isolate and a commonly used reference genome. Comparative genomic analysis between V. cholerae C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to V. cholerae pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, V. cholerae N16961 exhibited greater motility and reduced biofilm formation compared to V. cholerae C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in V. cholerae.
Collapse
Affiliation(s)
| | - Christina Bleis
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sören Abel
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
7
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. The recombination initiation functions DprA and RecFOR suppress microindel mutations in Acinetobacter baylyi ADP1. Mol Microbiol 2024; 122:1-10. [PMID: 38760330 DOI: 10.1111/mmi.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Coletti A, Newhall KA, Walker BL, Bloom K. Different relative scalings between transient forces and thermal fluctuations tune regimes of chromatin organization. ARXIV 2024:arXiv:2401.06921v2. [PMID: 38979491 PMCID: PMC11230345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Within the nucleus, structural maintenance of chromosome protein complexes, namely condensin and cohesin, create an architecture to facilitate the organization and proper function of the genome. Condensin, in addition to performing loop extrusion, creates localized clusters of chromatin in the nucleolus through transient crosslinks. Large-scale simulations revealed three different dynamic behaviors as a function of timescale: slow crosslinking leads to no clusters, fast crosslinking produces rigid slowly changing clusters, while intermediate timescales produce flexible clusters that mediate gene interaction. By mathematically analyzing different relative scalings of the two sources of stochasticity, thermal fluctuations and the force induced by the transient crosslinks, we predict these three distinct regimes of cluster behavior. Standard time-averaging that takes the fluctuations of the transient crosslink force to zero predicts the existence of rigid clusters. Accounting for the interaction of both fluctuations from the crosslinks and thermal noise with an effective energy landscape predicts the timescale-dependent lifetimes of flexible clusters. No clusters are predicted when the fluctuations of the transient crosslink force are taken to be large relative to thermal fluctuations. This mathematical perturbation analysis illuminates the importance of accounting for stochasticity in local incoherent transient forces to predict emergent complex biological behavior.
Collapse
Affiliation(s)
- Anna Coletti
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510
| | - Benjamin L. Walker
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27510
| |
Collapse
|
9
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Tang J, Herzfeld AM, Leon G, Brynildsen MP. Differential impacts of DNA repair machinery on fluoroquinolone persisters with different chromosome abundances. mBio 2024; 15:e0037424. [PMID: 38564687 PMCID: PMC11077951 DOI: 10.1128/mbio.00374-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
DNA repair machinery has been found to be indispensable for fluoroquinolone (FQ) persistence of Escherichia coli. Previously, we found that cells harboring two copies of the chromosome (2Chr) in stationary-phase cultures were more likely to yield FQ persisters than those with one copy of the chromosome (1Chr). Furthermore, we found that RecA and RecB were required to observe that difference, and that loss of either more significantly impacted 2Chr persisters than 1Chr persisters. To better understand the survival mechanisms of persisters with different chromosome abundances, we examined their dependencies on different DNA repair proteins. Here, we show that lexA3 and ∆recN negatively impact the abundances of 2Chr persisters to FQs, without significant impacts on 1Chr persisters. In comparison, ∆xseA, ∆xseB, and ∆uvrD preferentially depress 1Chr persistence to levels that were near the limit of detection. Collectively, these data show that the DNA repair mechanisms used by persisters vary based on chromosome number, and suggest that efforts to eradicate FQ persisters will likely have to take heterogeneity in single-cell chromosome abundance into consideration. IMPORTANCE Persisters are rare phenotypic variants in isogenic populations that survive antibiotic treatments that kill the other cells present. Evidence has accumulated that supports a role for persisters in chronic and recurrent infections. Here, we explore how an under-appreciated phenotypic variable, chromosome copy number (#Chr), influences the DNA repair systems persisters use to survive fluoroquinolone treatments. We found that #Chr significantly biases the DNA repair systems used by persisters, which suggests that #Chr heterogeneity should be considered when devising strategies to eradicate these troublesome bacterial variants.
Collapse
Affiliation(s)
- Juechun Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Allison M. Herzfeld
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
Takahashi M, Ito K, Iwasaki H, Norden B. Linear dichroism reveals the perpendicular orientation of DNA bases in the RecA and Rad51 recombinase filaments: A possible mechanism for the strand exchange reaction. Chirality 2024; 36:e23664. [PMID: 38561319 DOI: 10.1002/chir.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.
Collapse
Affiliation(s)
- Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Kentaro Ito
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Iwasaki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Innovative Science Institute, Tokyo Institute of Technology, Yokohama, Japan
| | - Bengt Norden
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Shibata T, Ikawa S, Iwasaki W, Sasanuma H, Masai H, Hirota K. Homology recognition without double-stranded DNA-strand separation in D-loop formation by RecA. Nucleic Acids Res 2024; 52:2565-2577. [PMID: 38214227 PMCID: PMC10954442 DOI: 10.1093/nar/gkad1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the β-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Shukuko Ikawa
- Cellular & Molecular Biology Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Sasanuma
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
13
|
Sharma DK, Soni I, Misra HS, Rajpurohit YS. Natural transformation-specific DprA coordinate DNA double-strand break repair pathways in heavily irradiated D. radiodurans. Appl Environ Microbiol 2024; 90:e0194823. [PMID: 38193676 PMCID: PMC10880594 DOI: 10.1128/aem.01948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
14
|
de la Cruz M, Kunert F, Taymaz-Nikerel H, Sigala JC, Gosset G, Büchs J, Lara AR. Increasing the Pentose Phosphate Pathway Flux to Improve Plasmid DNA Production in Engineered E. coli. Microorganisms 2024; 12:150. [PMID: 38257977 PMCID: PMC10820320 DOI: 10.3390/microorganisms12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand of plasmid DNA (pDNA) as a key element for gene therapy products, as well as mRNA and DNA vaccines, is increasing together with the need for more efficient production processes. An engineered E. coli strain lacking the phosphotransferase system and the pyruvate kinase A gene has been shown to produce more pDNA than its parental strain. With the aim of improving pDNA production in the engineered strain, several strategies to increase the flux to the pentose phosphate pathway (PPP) were evaluated. The simultaneous consumption of glucose and glycerol was a simple way to increase the growth rate, pDNA production rate, and supercoiled fraction (SCF). The overexpression of key genes from the PPP also improved pDNA production in glucose, but not in mixtures of glucose and glycerol. Particularly, the gene coding for the glucose 6-phosphate dehydrogenase (G6PDH) strongly improved the SCF, growth rate, and pDNA production rate. A linear relationship between the G6PDH activity and pDNA yield was found. A higher flux through the PPP was confirmed by flux balance analysis, which also estimates relevant differences in fluxes of the tricarboxylic acid cycle. These results are useful for developing further cell engineering strategies to increase pDNA production and quality.
Collapse
Affiliation(s)
- Mitzi de la Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Flavio Kunert
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060 Istanbul, Turkey
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Guillermo Gosset
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Alvaro R. Lara
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
16
|
Förster M, Rathmann I, Yüksel M, Power JJ, Maier B. Genome-wide transformation reveals extensive exchange across closely related Bacillus species. Nucleic Acids Res 2023; 51:12352-12366. [PMID: 37971327 PMCID: PMC10711437 DOI: 10.1093/nar/gkad1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial transformation is an important mode of horizontal gene transfer that helps spread genetic material across species boundaries. Yet, the factors that pose barriers to genome-wide cross-species gene transfer are poorly characterized. Here, we develop a replacement accumulation assay to study the effects of genomic distance on transfer dynamics. Using Bacillus subtilis as recipient and various species of the genus Bacillus as donors, we find that the rate of orthologous replacement decreases exponentially with the divergence of their core genomes. We reveal that at least 96% of the B. subtilis core genes are accessible to replacement by alleles from Bacillus spizizenii. For the more distantly related Bacillus atrophaeus, gene replacement events cluster at genomic locations with high sequence identity and preferentially replace ribosomal genes. Orthologous replacement also creates mosaic patterns between donor and recipient genomes, rearranges the genome architecture, and governs gain and loss of accessory genes. We conclude that cross-species gene transfer is dominated by orthologous replacement of core genes which occurs nearly unrestricted between closely related species. At a lower rate, the exchange of accessory genes gives rise to more complex genome dynamics.
Collapse
Affiliation(s)
- Mona Förster
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Melih Yüksel
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Jeffrey J Power
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Noda S, Akanuma G, Keyamura K, Hishida T. RecN spatially and temporally controls RecA-mediated repair of DNA double-strand breaks. J Biol Chem 2023; 299:105466. [PMID: 37979912 PMCID: PMC10714372 DOI: 10.1016/j.jbc.2023.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.
Collapse
Affiliation(s)
- Shunsuke Noda
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Genki Akanuma
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, Tokyo, Japan.
| |
Collapse
|
18
|
Liu L, Chen Y, Shen J, Pan Y, Lin W. Metabolic versatility of soil microbial communities below the rocks of the hyperarid Dalangtan Playa. Appl Environ Microbiol 2023; 89:e0107223. [PMID: 37902391 PMCID: PMC10686078 DOI: 10.1128/aem.01072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The hyperarid Dalangtan Playa in the western Qaidam Basin, northwestern China, is a unique terrestrial analog of Mars. Despite the polyextreme environments of this area, habitats below translucent rocks capable of environmental buffering could serve as refuges for microbial life. In this study, the hybrid assembly of Illumina short reads and Nanopore long reads recovered high-quality and high-continuity genomes, allowing for high-accuracy analysis and a deeper understanding of extremophiles in the sheltered soils of the Dalangtan Playa. Our findings reveal self-supporting and metabolically versatile sheltered soil communities adapted to a hyperarid and hypersaline playa, which provides implications for the search for life signals on Mars.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
20
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Hou Z, Xu Z, Wu M, Ma L, Sui L, Bian P, Wang T. Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli. BIOLOGY 2023; 12:1406. [PMID: 37998005 PMCID: PMC10669199 DOI: 10.3390/biology12111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Repeat-mediated deletion (RMD) rearrangement is a major source of genome instability and can be deleterious to the organism, whereby the intervening sequence between two repeats is deleted along with one of the repeats. RMD rearrangement is likely induced by DNA double-strand breaks (DSBs); however, it is unclear how the complexity of DSBs influences RMD rearrangement. Here, a transgenic Escherichia coli strain K12 MG1655 with a lacI repeat-controlled amp activation was used while taking advantage of particle irradiation, such as proton and carbon irradiation, to generate different complexities of DSBs. Our research confirmed the enhancement of RMD under proton and carbon irradiation and revealed a positive correlation between RMD enhancement and LET. In addition, RMD enhancement could be suppressed by an intermolecular homologous sequence, which was regulated by its composition and length. Meanwhile, RMD enhancement was significantly stimulated by exogenous λ-Red recombinase. Further results investigating its mechanisms showed that the enhancement of RMD, induced by particle irradiation, occurred in a RecA-dependent manner. Our finding has a significant impact on the understanding of RMD rearrangement and provides some clues for elucidating the repair process and possible outcomes of complex DNA damage.
Collapse
Affiliation(s)
- Zhiyang Hou
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Zelin Xu
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Mengying Wu
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China;
- National Innovation Center of Radiation Application, Beijing 102413, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China;
- National Innovation Center of Radiation Application, Beijing 102413, China
| | - Po Bian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| |
Collapse
|
22
|
Sabei A, Prentiss M, Prévost C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. Int J Mol Sci 2023; 24:14896. [PMID: 37834348 PMCID: PMC10573387 DOI: 10.3390/ijms241914896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Homologous recombination (HR) is a fundamental process common to all species. HR aims to faithfully repair DNA double strand breaks. HR involves the formation of nucleoprotein filaments on DNA single strands (ssDNA) resected from the break. The nucleoprotein filaments search for homologous regions in the genome and promote strand exchange with the ssDNA homologous region in an unbroken copy of the genome. HR has been the object of intensive studies for decades. Because multi-scale dynamics is a fundamental aspect of this process, studying HR is highly challenging, both experimentally and using computational approaches. Nevertheless, knowledge has built up over the years and has recently progressed at an accelerated pace, borne by increasingly focused investigations using new techniques such as single molecule approaches. Linking this knowledge to the atomic structure of the nucleoprotein filament systems and the succession of unstable, transient intermediate steps that takes place during the HR process remains a challenge; modeling retains a very strong role in bridging the gap between structures that are stable enough to be observed and in exploring transition paths between these structures. However, working on ever-changing long filament systems submitted to kinetic processes is full of pitfalls. This review presents the modeling tools that are used in such studies, their possibilities and limitations, and reviews the advances in the knowledge of the HR process that have been obtained through modeling. Notably, we will emphasize how cooperative behavior in the HR nucleoprotein filament enables modeling to produce reliable information.
Collapse
Affiliation(s)
- Afra Sabei
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA02138, USA;
| | - Chantal Prévost
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Université de Paris, 13 Rue Pierre et Marie Curie, F-75005 Paris, France;
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, F-75005 Paris, France
| |
Collapse
|
23
|
Wang B, Said N, Hilal T, Finazzo M, Wahl MC, Artsimovitch I. Transcription termination factor ρ polymerizes under stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553922. [PMID: 37645988 PMCID: PMC10462130 DOI: 10.1101/2023.08.18.553922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Bacterial RNA helicase ρ is a genome sentinel that terminates synthesis of damaged and junk RNAs that are not translated by the ribosome. Co-transcriptional RNA surveillance by ρ is essential for quality control of the transcriptome during optimal growth. However, it is unclear how bacteria protect their RNAs from overzealous ρ during dormancy or stress, conditions common in natural habitats. Here we used cryogenic electron microscopy, biochemical, and genetic approaches to show that residue substitutions, ADP, or ppGpp promote hyper-oligomerization of Escherichia coli ρ. Our results demonstrate that nucleotides bound at subunit interfaces control ρ switching from active hexamers to inactive higher-order oligomers and extended filaments. Polymers formed upon exposure to antibiotics or ppGpp disassemble when stress is relieved, thereby directly linking termination activity to cellular physiology. Inactivation of ρ through hyper-oligomerization is a regulatory strategy shared by RNA polymerases, ribosomes, and metabolic enzymes across all life.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, 14195 Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C. Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, D-14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, D-12489 Berlin, Germany
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Belan O, Greenhough L, Kuhlen L, Anand R, Kaczmarczyk A, Gruszka DT, Yardimci H, Zhang X, Rueda DS, West SC, Boulton SJ. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Mol Cell 2023; 83:2925-2940.e8. [PMID: 37499663 PMCID: PMC7615647 DOI: 10.1016/j.molcel.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Homologous recombination (HR) is essential for error-free repair of DNA double-strand breaks, perturbed replication forks (RFs), and post-replicative single-stranded DNA (ssDNA) gaps. To initiate HR, the recombination mediator and tumor suppressor protein BRCA2 facilitates nucleation of RAD51 on ssDNA prior to stimulation of RAD51 filament growth by RAD51 paralogs. Although ssDNA binding by BRCA2 has been implicated in RAD51 nucleation, the function of double-stranded DNA (dsDNA) binding by BRCA2 remains unclear. Here, we exploit single-molecule (SM) imaging to visualize BRCA2-mediated RAD51 nucleation in real time using purified proteins. We report that BRCA2 nucleates and stabilizes RAD51 on ssDNA either directly or through an unappreciated diffusion-assisted delivery mechanism involving binding to and sliding along dsDNA, which requires the cooperative action of multiple dsDNA-binding modules in BRCA2. Collectively, our work reveals two distinct mechanisms of BRCA2-dependent RAD51 loading onto ssDNA, which we propose are critical for its diverse functions in maintaining genome stability and cancer suppression.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Luke Greenhough
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lucas Kuhlen
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Artur Kaczmarczyk
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
25
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
26
|
Prentiss M, Wang D, Fu J, Prévost C, Godoy-Carter V, Kleckner N, Danilowicz C. Highly mismatch-tolerant homology testing by RecA could explain how homology length affects recombination. PLoS One 2023; 18:e0288611. [PMID: 37440583 PMCID: PMC10343044 DOI: 10.1371/journal.pone.0288611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
In E. coli, double strand breaks (DSBs) are resected and loaded with RecA protein. The genome is then rapidly searched for a sequence that is homologous to the DNA flanking the DSB. Mismatches in homologous partners are rare, suggesting that RecA should rapidly reject mismatched recombination products; however, this is not the case. Decades of work have shown that long lasting recombination products can include many mismatches. In this work, we show that in vitro RecA forms readily observable recombination products when 16% of the bases in the product are mismatched. We also consider various theoretical models of mismatch-tolerant homology testing. The models test homology by comparing the sequences of Ltest bases in two single-stranded DNAs (ssDNA) from the same genome. If the two sequences pass the homology test, the pairing between the two ssDNA becomes permanent. Stringency is the fraction of permanent pairings that join ssDNA from the same positions in the genome. We applied the models to both randomly generated genomes and bacterial genomes. For both randomly generated genomes and bacterial genomes, the models show that if no mismatches are accepted stringency is ∼ 99% when Ltest = 14 bp. For randomly generated genomes, stringency decreases with increasing mismatch tolerance, and stringency improves with increasing Ltest. In contrast, in bacterial genomes when Ltest ∼ 75 bp, stringency is ∼ 99% for both mismatch-intolerant and mismatch-tolerant homology testing. Furthermore, increasing Ltest does not improve stringency because most incorrect pairings join different copies of repeats. In sum, for bacterial genomes highly mismatch tolerant homology testing of 75 bp provides the same stringency as homology testing that rejects all mismatches and testing more than ∼75 base pairs is not useful. Interestingly, in vivo commitment to recombination typically requires homology testing of ∼ 75 bp, consistent with highly mismatch intolerant testing.
Collapse
Affiliation(s)
- Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Dianzhuo Wang
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jonathan Fu
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France
| | - Veronica Godoy-Carter
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
28
|
Tsubouchi H. The Hop2-Mnd1 Complex and Its Regulation of Homologous Recombination. Biomolecules 2023; 13:biom13040662. [PMID: 37189409 DOI: 10.3390/biom13040662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Homologous recombination (HR) is essential for meiosis in most sexually reproducing organisms, where it is induced upon entry into meiotic prophase. Meiotic HR is conducted by the collaborative effort of proteins responsible for DNA double-strand break repair and those produced specifically during meiosis. The Hop2-Mnd1 complex was originally identified as a meiosis-specific factor that is indispensable for successful meiosis in budding yeast. Later, it was found that Hop2-Mnd1 is conserved from yeasts to humans, playing essential roles in meiosis. Accumulating evidence suggests that Hop2-Mnd1 promotes RecA-like recombinases towards homology search/strand exchange. This review summarizes studies on the mechanism of the Hop2-Mnd1 complex in promoting HR and beyond.
Collapse
Affiliation(s)
- Hideo Tsubouchi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
29
|
Bell JC, Dombrowski CC, Plank JL, Jensen RB, Kowalczykowski SC. BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proc Natl Acad Sci U S A 2023; 120:e2221971120. [PMID: 36976771 PMCID: PMC10083600 DOI: 10.1073/pnas.2221971120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mutations in the breast cancer susceptibility gene, BRCA2, greatly increase an individual's lifetime risk of developing breast and ovarian cancers. BRCA2 suppresses tumor formation by potentiating DNA repair via homologous recombination. Central to recombination is the assembly of a RAD51 nucleoprotein filament, which forms on single-stranded DNA (ssDNA) generated at or near the site of chromosomal damage. However, replication protein-A (RPA) rapidly binds to and continuously sequesters this ssDNA, imposing a kinetic barrier to RAD51 filament assembly that suppresses unregulated recombination. Recombination mediator proteins-of which BRCA2 is the defining member in humans-alleviate this kinetic barrier to catalyze RAD51 filament formation. We combined microfluidics, microscopy, and micromanipulation to directly measure both the binding of full-length BRCA2 to-and the assembly of RAD51 filaments on-a region of RPA-coated ssDNA within individual DNA molecules designed to mimic a resected DNA lesion common in replication-coupled recombinational repair. We demonstrate that a dimer of RAD51 is minimally required for spontaneous nucleation; however, growth self-terminates below the diffraction limit. BRCA2 accelerates nucleation of RAD51 to a rate that approaches the rapid association of RAD51 to naked ssDNA, thereby overcoming the kinetic block imposed by RPA. Furthermore, BRCA2 eliminates the need for the rate-limiting nucleation of RAD51 by chaperoning a short preassembled RAD51 filament onto the ssDNA complexed with RPA. Therefore, BRCA2 regulates recombination by initiating RAD51 filament formation.
Collapse
Affiliation(s)
- Jason C. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Christopher C. Dombrowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Jody L. Plank
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Ryan B. Jensen
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
30
|
Tököli A, Bodnár B, Bogár F, Paragi G, Hetényi A, Bartus É, Wéber E, Hegedüs Z, Szabó Z, Kecskeméti G, Szakonyi G, Martinek TA. Structural Adaptation of the Single-Stranded DNA-Binding Protein C-Terminal to DNA Metabolizing Partners Guides Inhibitor Design. Pharmaceutics 2023; 15:1032. [PMID: 37111518 PMCID: PMC10143822 DOI: 10.3390/pharmaceutics15041032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Single-stranded DNA-binding protein (SSB) is a bacterial interaction hub and an appealing target for antimicrobial therapy. Understanding the structural adaptation of the disordered SSB C-terminus (SSB-Ct) to DNA metabolizing enzymes (e.g., ExoI and RecO) is essential for designing high-affinity SSB mimetic inhibitors. Molecular dynamics simulations revealed the transient interactions of SSB-Ct with two hot spots on ExoI and RecO. The residual flexibility of the peptide-protein complexes allows adaptive molecular recognition. Scanning with non-canonical amino acids revealed that modifications at both termini of SSB-Ct could increase the affinity, supporting the two-hot-spot binding model. Combining unnatural amino acid substitutions on both segments of the peptide resulted in enthalpy-enhanced affinity, accompanied by enthalpy-entropy compensation, as determined by isothermal calorimetry. NMR data and molecular modeling confirmed the reduced flexibility of the improved affinity complexes. Our results highlight that the SSB-Ct mimetics bind to the DNA metabolizing targets through the hot spots, interacting with both of segments of the ligands.
Collapse
Affiliation(s)
- Attila Tököli
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Brigitta Bodnár
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- Institute of Physics, University of Pécs, H7624 Pécs, Hungary
- Department of Theoretical Physics, University of Szeged, H6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Éva Bartus
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Edit Wéber
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Zoltán Szabó
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
| | - Gerda Szakonyi
- Institute of Pharmaceutical Analysis, University of Szeged, H6720 Szeged, Hungary
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, H6720 Szeged, Hungary; (A.T.)
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), H6720 Szeged, Hungary
| |
Collapse
|
31
|
Yu F, Zhang D, Zhao C, Zhao Q, Jiang G, Wang H. Flanking strand separation activity of RecA nucleoprotein filaments in DNA strand exchange reactions. Nucleic Acids Res 2023; 51:2270-2283. [PMID: 36807462 PMCID: PMC10018334 DOI: 10.1093/nar/gkad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/22/2023] Open
Abstract
The recombinase RecA/Rad51 ATPase family proteins catalyze paramount DNA strand exchange reactions that are critically involved in maintaining genome integrity. However, it remains unclear how DNA strand exchange proceeds when encountering RecA-free defects in recombinase nucleoprotein filaments. Herein, by designing a series of unique substrates (e.g. truncated or conjugated incoming single-stranded DNA, and extended donor double-stranded DNA) and developing a two-color alternating excitation-modified single-molecule real-time fluorescence imaging assay, we resolve the two key steps (donor strand separation and new base-pair formation) that are usually inseparable during the reaction, revealing a novel long-range flanking strand separation activity of synaptic RecA nucleoprotein filaments. We further evaluate the kinetics and free energetics of strand exchange reactions mediated by various substrates, and elucidate the mechanism of flanking strand separation. Based on these findings, we propose a potential fundamental molecular model involved in flanking strand separation, which provides new insights into strand exchange mechanism and homologous recombination.
Collapse
Affiliation(s)
- Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chubin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
32
|
Kabirova E, Nurislamov A, Shadskiy A, Smirnov A, Popov A, Salnikov P, Battulin N, Fishman V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int J Mol Sci 2023; 24:5017. [PMID: 36902449 PMCID: PMC10003631 DOI: 10.3390/ijms24055017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) complexes are essential proteins found in genomes of all cellular organisms. Essential functions of these proteins, such as mitotic chromosome formation and sister chromatid cohesion, were discovered a long time ago. Recent advances in chromatin biology showed that SMC proteins are involved in many other genomic processes, acting as active motors extruding DNA, which leads to the formation of chromatin loops. Some loops formed by SMC proteins are highly cell type and developmental stage specific, such as SMC-mediated DNA loops required for VDJ recombination in B-cell progenitors, or dosage compensation in Caenorhabditis elegans and X-chromosome inactivation in mice. In this review, we focus on the extrusion-based mechanisms that are common for multiple cell types and species. We will first describe an anatomy of SMC complexes and their accessory proteins. Next, we provide biochemical details of the extrusion process. We follow this by the sections describing the role of SMC complexes in gene regulation, DNA repair, and chromatin topology.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Nurislamov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Artem Shadskiy
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Smirnov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Andrey Popov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Salnikov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Artificial Intelligence Research Institute (AIRI), 121108 Moscow, Russia
| |
Collapse
|
33
|
Torres R, Carrasco B, Alonso JC. Bacillus subtilis RadA/Sms-Mediated Nascent Lagging-Strand Unwinding at Stalled or Reversed Forks Is a Two-Step Process: RadA/Sms Assists RecA Nucleation, and RecA Loads RadA/Sms. Int J Mol Sci 2023; 24:ijms24054536. [PMID: 36901969 PMCID: PMC10003422 DOI: 10.3390/ijms24054536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Replication fork rescue requires Bacillus subtilis RecA, its negative (SsbA) and positive (RecO) mediators, and fork-processing (RadA/Sms). To understand how they work to promote fork remodeling, reconstituted branched replication intermediates were used. We show that RadA/Sms (or its variant, RadA/Sms C13A) binds to the 5'-tail of a reversed fork with longer nascent lagging-strand and unwinds it in the 5'→3' direction, but RecA and its mediators limit unwinding. RadA/Sms cannot unwind a reversed fork with a longer nascent leading-strand, or a gapped stalled fork, but RecA interacts with and activates unwinding. Here, the molecular mechanism by which RadA/Sms, in concert with RecA, in a two-step reaction, unwinds the nascent lagging-strand of reversed or stalled forks is unveiled. First, RadA/Sms, as a mediator, contributes to SsbA displacement from the forks and nucleates RecA onto single-stranded DNA. Then, RecA, as a loader, interacts with and recruits RadA/Sms onto the nascent lagging strand of these DNA substrates to unwind them. Within this process, RecA limits RadA/Sms self-assembly to control fork processing, and RadA/Sms prevents RecA from provoking unnecessary recombination.
Collapse
|
34
|
Johnston CHG, Hope R, Soulet AL, Dewailly M, De Lemos D, Polard P. The RecA-directed recombination pathway of natural transformation initiates at chromosomal replication forks in the pneumococcus. Proc Natl Acad Sci U S A 2023; 120:e2213867120. [PMID: 36795748 PMCID: PMC9974461 DOI: 10.1073/pnas.2213867120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/09/2022] [Indexed: 02/17/2023] Open
Abstract
Homologous recombination (HR) is a crucial mechanism of DNA strand exchange that promotes genetic repair and diversity in all kingdoms of life. Bacterial HR is driven by the universal recombinase RecA, assisted in the early steps by dedicated mediators that promote its polymerization on single-stranded DNA (ssDNA). In bacteria, natural transformation is a prominent HR-driven mechanism of horizontal gene transfer specifically dependent on the conserved DprA recombination mediator. Transformation involves internalization of exogenous DNA as ssDNA, followed by its integration into the chromosome by RecA-directed HR. How DprA-mediated RecA filamentation on transforming ssDNA is spatiotemporally coordinated with other cellular processes remains unknown. Here, we tracked the localization of fluorescent fusions to DprA and RecA in Streptococcus pneumoniae and revealed that both accumulate in an interdependent manner with internalized ssDNA at replication forks. In addition, dynamic RecA filaments were observed emanating from replication forks, even with heterologous transforming DNA, which probably represent chromosomal homology search. In conclusion, this unveiled interaction between HR transformation and replication machineries highlights an unprecedented role for replisomes as landing pads for chromosomal access of tDNA, which would define a pivotal early HR step for its chromosomal integration.
Collapse
Affiliation(s)
- Calum H. G. Johnston
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Rachel Hope
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
- Department of Life Sciences, Imperial College, SW7 2AZLondon, UK
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Marie Dewailly
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - David De Lemos
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| | - Patrice Polard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative, Centre Nationale de la Recherche Scientifique, 31062Toulouse, France
- Université Paul Sabatier (Toulouse III), 31062Toulouse, France
| |
Collapse
|
35
|
Al-Fatlawi A, Schroeder M, Stewart AF. The Rad52 SSAP superfamily and new insight into homologous recombination. Commun Biol 2023; 6:87. [PMID: 36690694 PMCID: PMC9870868 DOI: 10.1038/s42003-023-04476-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Recent structures of DNA-bound bacterial and phage recombinases provide insights into homologous recombination and suggest relation to the eukaryotic Rad52 and identification of a Rad52 single strand annealing protein (SSAP) superfamily.
Collapse
Affiliation(s)
- Ali Al-Fatlawi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany.
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47, 01307, Dresden, Germany.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
36
|
Cory MB, Li A, Hurley CM, Hostetler ZM, Venkatesh Y, Jones CM, Petersson EJ, Kohli RM. Engineered RecA Constructs Reveal the Minimal SOS Activation Complex. Biochemistry 2022; 61:2884-2896. [PMID: 36473084 PMCID: PMC9982712 DOI: 10.1021/acs.biochem.2c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SOS response is a bacterial DNA damage response pathway that has been heavily implicated in bacteria's ability to evolve resistance to antibiotics. Activation of the SOS response is dependent on the interaction between two bacterial proteins, RecA and LexA. RecA acts as a DNA damage sensor by forming lengthy oligomeric filaments (RecA*) along single-stranded DNA (ssDNA) in an ATP-dependent manner. RecA* can then bind to LexA, the repressor of SOS response genes, triggering LexA degradation and leading to induction of the SOS response. Formation of the RecA*-LexA complex therefore serves as the key "SOS activation signal." Given the challenges associated with studying a complex involving multiple macromolecular interactions, the essential constituents of RecA* that allow LexA cleavage are not well defined. Here, we leverage head-to-tail linked and end-capped RecA constructs as tools to define the minimal RecA* filament that can engage LexA. In contrast to previously postulated models, we found that as few as three linked RecA units are capable of ssDNA binding, LexA binding, and LexA cleavage. We further demonstrate that RecA oligomerization alone is insufficient for LexA cleavage, with an obligate requirement for ATP and ssDNA binding to form a competent SOS activation signal with the linked constructs. Our minimal system for RecA* highlights the limitations of prior models for the SOS activation signal and offers a novel tool that can inform efforts to slow acquired antibiotic resistance by targeting the SOS response.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Allen Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christina M. Hurley
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zachary M. Hostetler
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chloe M. Jones
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
38
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Laureti L, Lee L, Philippin G, Kahi M, Pagès V. Single strand gap repair: The presynaptic phase plays a pivotal role in modulating lesion tolerance pathways. PLoS Genet 2022; 18:e1010238. [PMID: 35653392 PMCID: PMC9203016 DOI: 10.1371/journal.pgen.1010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/16/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.
Collapse
Affiliation(s)
- Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Lara Lee
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Philippin
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michel Kahi
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
40
|
Sun W, Liang X, Zhu C, Xu Y, Ding Y, Huang YP. Regulation of maltocin synthesis in Stenotrophomonas maltophilia by positive and negative regulators. Res Microbiol 2022; 173:103956. [DOI: 10.1016/j.resmic.2022.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
41
|
Gozzi K, Salinas R, Nguyen VD, Laub MT, Schumacher MA. ssDNA is an allosteric regulator of the C. crescentus SOS-independent DNA damage response transcription activator, DriD. Genes Dev 2022; 36:618-633. [PMID: 35618312 PMCID: PMC9186387 DOI: 10.1101/gad.349541.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022]
Abstract
DNA damage repair systems are critical for genomic integrity. However, they must be coordinated with DNA replication and cell division to ensure accurate genomic transmission. In most bacteria, this coordination is mediated by the SOS response through LexA, which triggers a halt in cell division until repair is completed. Recently, an SOS-independent damage response system was revealed in Caulobacter crescentus. This pathway is controlled by the transcription activator, DriD, but how DriD senses and signals DNA damage is unknown. To address this question, we performed biochemical, cellular, and structural studies. We show that DriD binds a specific promoter DNA site via its N-terminal HTH domain to activate transcription of genes, including the cell division inhibitor didA A structure of the C-terminal portion of DriD revealed a WYL motif domain linked to a WCX dimerization domain. Strikingly, we found that DriD binds ssDNA between the WYL and WCX domains. Comparison of apo and ssDNA-bound DriD structures reveals that ssDNA binding orders and orients the DriD domains, indicating a mechanism for ssDNA-mediated operator DNA binding activation. Biochemical and in vivo studies support the structural model. Our data thus reveal the molecular mechanism underpinning an SOS-independent DNA damage repair pathway.
Collapse
Affiliation(s)
- Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Molza AE, Westermaier Y, Moutte M, Ducrot P, Danilowicz C, Godoy-Carter V, Prentiss M, Robert CH, Baaden M, Prévost C. Building Biological Relevance Into Integrative Modelling of Macromolecular Assemblies. Front Mol Biosci 2022; 9:826136. [PMID: 35480882 PMCID: PMC9035671 DOI: 10.3389/fmolb.2022.826136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 01/25/2023] Open
Abstract
Recent advances in structural biophysics and integrative modelling methods now allow us to decipher the structures of large macromolecular assemblies. Understanding the dynamics and mechanisms involved in their biological function requires rigorous integration of all available data. We have developed a complete modelling pipeline that includes analyses to extract biologically significant information by consistently combining automated and interactive human-guided steps. We illustrate this idea with two examples. First, we describe the ryanodine receptor, an ion channel that controls ion flux across the cell membrane through transitions between open and closed states. The conformational changes associated with the transitions are small compared to the considerable system size of the receptor; it is challenging to consistently track these states with the available cryo-EM structures. The second example involves homologous recombination, in which long filaments of a recombinase protein and DNA catalyse the exchange of homologous DNA strands to reliably repair DNA double-strand breaks. The nucleoprotein filament reaction intermediates in this process are short-lived and heterogeneous, making their structures particularly elusive. The pipeline we describe, which incorporates experimental and theoretical knowledge combined with state-of-the-art interactive and immersive modelling tools, can help overcome these challenges. In both examples, we point to new insights into biological processes that arise from such interdisciplinary approaches.
Collapse
Affiliation(s)
- Anne-Elisabeth Molza
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Yvonne Westermaier
- Biophysics and Modelling Department/In Vitro Pharmacology Unit–IDRS (Servier Research Institute), Croissy-sur-Seine, France
| | | | - Pierre Ducrot
- Biophysics and Modelling Department/In Vitro Pharmacology Unit–IDRS (Servier Research Institute), Croissy-sur-Seine, France
| | | | | | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA, United States
| | - Charles H. Robert
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Chantal Prévost
- CNRS, Université Paris-Cité, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
- *Correspondence: Chantal Prévost ,
| |
Collapse
|
43
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
44
|
Cofsky JC, Soczek KM, Knott GJ, Nogales E, Doudna JA. CRISPR-Cas9 bends and twists DNA to read its sequence. Nat Struct Mol Biol 2022; 29:395-402. [PMID: 35422516 PMCID: PMC9189902 DOI: 10.1038/s41594-022-00756-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022]
Abstract
In bacterial defense and genome editing applications, the CRISPR-associated protein Cas9 searches millions of DNA base pairs to locate a 20-nucleotide, guide RNA-complementary target sequence that abuts a protospacer-adjacent motif (PAM). Target capture requires Cas9 to unwind DNA at candidate sequences using an unknown ATP-independent mechanism. Here we show that Cas9 sharply bends and undertwists DNA on PAM binding, thereby flipping DNA nucleotides out of the duplex and toward the guide RNA for sequence interrogation. Cryogenic-electron microscopy (cryo-EM) structures of Cas9-RNA-DNA complexes trapped at different states of the interrogation pathway, together with solution conformational probing, reveal that global protein rearrangement accompanies formation of an unstacked DNA hinge. Bend-induced base flipping explains how Cas9 'reads' snippets of DNA to locate target sites within a vast excess of nontarget DNA, a process crucial to both bacterial antiviral immunity and genome editing. This mechanism establishes a physical solution to the problem of complementarity-guided DNA search and shows how interrogation speed and local DNA geometry may influence genome editing efficiency.
Collapse
Affiliation(s)
- Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| |
Collapse
|
45
|
A tweak and a peek: How Cas9 pries open double-stranded DNA to check its sequence. Nat Struct Mol Biol 2022; 29:286-288. [PMID: 35422517 DOI: 10.1038/s41594-022-00763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Essential Role for an Isoform of Escherichia coli Translation Initiation Factor IF2 in Repair of Two-Ended DNA Double-Strand Breaks. J Bacteriol 2022; 204:e0057121. [PMID: 35343794 DOI: 10.1128/jb.00571-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Escherichia coli, three isoforms of the essential translation initiation factor IF2 (IF2-1, IF2-2, and IF2-3) are generated from separate in-frame initiation codons in infB. The isoforms have earlier been suggested to additionally participate in DNA damage repair and replication restart. It is also known that the proteins RecA and RecBCD are needed for repair of DNA double-strand breaks (DSBs) in E. coli. Here, we show that strains lacking IF2-1 are profoundly sensitive to two-ended DSBs in DNA generated by radiomimetic agents phleomycin or bleomycin, or by endonuclease I-SceI. However, these strains remained tolerant to other DSB-generating genotoxic agents or perturbations to which recA and recBC mutants remained sensitive, such as to mitomycin C, type-2 DNA topoisomerase inhibitors, or DSB caused by palindrome cleavage behind a replication fork. Data from genome-wide copy number analyses following I-SceI cleavage at a single chromosomal locus suggested that, in a strain lacking IF2-1, the magnitude of recombination-dependent replication through replication restart mechanisms is largely preserved but the extent of DNA resection around the DSB site is reduced. We propose that in the absence of IF2-1 it is the synapsis of a RecA nucleoprotein filament to its homologous target that is weakened, which in turn leads to a specific failure in assembly of Ter-to-oriC directed replisomes needed for consummation of two-ended DSB repair. IMPORTANCE Double-strand breaks (DSBs) in DNA are major threats to genome integrity. In Escherichia coli, DSBs are repaired by RecA- and RecBCD-mediated homologous recombination (HR). This study demonstrates a critical role for an isoform (IF2-1) of the translation initiation factor IF2 in the repair of two-ended DSBs in E. coli (that can be generated by ionizing radiation, certain DNA-damaging chemicals, or endonuclease action). It is proposed that IF2-1 acts to facilitate the function of RecA in the synapsis between a pair of DNA molecules during HR.
Collapse
|
47
|
Ramos C, Hernández-Tamayo R, López-Sanz M, Carrasco B, Serrano E, Alonso JC, Graumann PL, Ayora S. The RecD2 helicase balances RecA activities. Nucleic Acids Res 2022; 50:3432-3444. [PMID: 35234892 PMCID: PMC8989531 DOI: 10.1093/nar/gkac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.
Collapse
Affiliation(s)
- Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße 6, 35043 Marburg, Germany.,Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049Madrid, Spain
| |
Collapse
|
48
|
Mercolino J, Lo Sciuto A, Spinnato MC, Rampioni G, Imperi F. RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:325. [PMID: 35326787 PMCID: PMC8944484 DOI: 10.3390/antibiotics11030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress- and antibiotic-induced mutagenesis has been characterized in detail in the model organism Escherichia coli. However, its effect on antibiotic resistance in the human pathogen Pseudomonas aeruginosa is less clear. Here, we analyzed a recA deletion mutant and confirmed, by conjugation and gene expression assays, that RecA is required for homologous recombination and SOS response induction in P. aeruginosa. MIC assays demonstrated that RecA affects P. aeruginosa resistance only towards fluoroquinolones and genotoxic agents. The comparison of antibiotic-resistant mutant frequency between treated and untreated cultures revealed that, among the antibiotics tested, only fluoroquinolones induced mutagenesis in P. aeruginosa. Notably, both RecA and error-prone DNA polymerases were found to be dispensable for this process. These data demonstrate that the SOS response is not required for antibiotic-induced mutagenesis in P. aeruginosa, suggesting that RecA inhibition is not a suitable strategy to target antibiotic-induced emergence of resistance in this pathogen.
Collapse
Affiliation(s)
- Jessica Mercolino
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Alessandra Lo Sciuto
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Maria Concetta Spinnato
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
49
|
Carrasco B, Moreno-del Álamo M, Torres R, Alonso JC. PcrA Dissociates RecA Filaments and the SsbA and RecO Mediators Counterbalance Such Activity. Front Mol Biosci 2022; 9:836211. [PMID: 35223992 PMCID: PMC8865920 DOI: 10.3389/fmolb.2022.836211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
PcrA depletion is lethal in wild-type Bacillus subtilis cells. The PcrA DNA helicase contributes to unwinding RNA from the template strand, backtracking the RNA polymerase, rescuing replication-transcription conflicts, and disassembling RecA from single-stranded DNA (ssDNA) by poorly understood mechanisms. We show that, in the presence of RecA, circa one PcrA/plasmid-size circular ssDNA (cssDNA) molecule hydrolyzes ATP at a rate similar to that on the isolated cssDNA. PcrA K37A, which poorly hydrolyses ATP, fails to displace RecA from cssDNA. SsbA inhibits and blocks the ATPase activities of PcrA and RecA, respectively. RecO partially antagonizes and counteracts the negative effect of SsbA on PcrA- and RecA-mediated ATP hydrolysis, respectively. Conversely, multiple PcrA molecules are required to inhibit RecA·ATP-mediated DNA strand exchange (DSE). RecO and SsbA poorly antagonize the PcrA inhibitory effect on RecA·ATP-mediated DSE. We propose that two separable PcrA functions exist: an iterative translocating PcrA monomer strips RecA from cssDNA to prevent unnecessary recombination with the mediators SsbA and RecO balancing such activity; and a PcrA cluster that disrupts DNA transactions, as RecA-mediated DSE.
Collapse
|
50
|
Abstract
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan;
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; .,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|