1
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
2
|
Zhang L, Zhang M, Guo X, Gan D, Ye Y, Zhao Y, Ying J. A model for N-to-C direction in prebiotic peptide synthesis. Chem Commun (Camb) 2024; 60:2748-2751. [PMID: 38362617 DOI: 10.1039/d3cc06101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Drawing inspiration from the initiating amino acid modification in biosynthetic peptides, we have successfully demonstrated a biomimetic mechanism for N-to-C terminal extension in prebiotic peptide synthesis. This achievement was accomplished by using acetylated amino acid amides as the N-terminal substrate for peptide synthesis and amino acid amides as the C-terminal extension, with the reaction carried out in a dry-wet cycle at 80 °C without requiring any activators. This provides a plausible pathway for the formation of prebiotic peptides.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Min Zhang
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| | - Dingwei Gan
- School of Electrical Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
- College of Chemistry and Chemical Engineering, Xiamen University, No. 422, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, No. 818 Fenghua Road, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Cai N, Gomez-Duran A, Yonova-Doing E, Kundu K, Burgess AI, Golder ZJ, Calabrese C, Bonder MJ, Camacho M, Lawson RA, Li L, Williams-Gray CH, Di Angelantonio E, Roberts DJ, Watkins NA, Ouwehand WH, Butterworth AS, Stewart ID, Pietzner M, Wareham NJ, Langenberg C, Danesh J, Walter K, Rothwell PM, Howson JMM, Stegle O, Chinnery PF, Soranzo N. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat Med 2021; 27:1564-1575. [PMID: 34426706 DOI: 10.1038/s41591-021-01441-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.
Collapse
Affiliation(s)
- Na Cai
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aurora Gomez-Duran
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Kousik Kundu
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Annette I Burgess
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Zoe J Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Calabrese
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc J Bonder
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marta Camacho
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Lixin Li
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - David J Roberts
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant-Oxford Centre, John Radcliffe Hospital, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nick A Watkins
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Willem H Ouwehand
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nick J Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - John Danesh
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK.,British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.,Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Klaudia Walter
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Primary Public Health and Primary Care, University of Cambridge, Cambridge, UK.,Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Oliver Stegle
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. .,Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. .,Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Nicole Soranzo
- Human Genetics Department, Wellcome Sanger Institute (WT), Hinxton, UK. .,British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK. .,National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. .,Department of Haematology, University of Cambridge, Cambridge, UK. .,Genomics Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|