1
|
Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
|
2
|
Sönmez A, Mustafa R, Ryll ST, Tuorto F, Wacheul L, Ponti D, Litke C, Hering T, Kojer K, Koch J, Pitzer C, Kirsch J, Neueder A, Kreiner G, Lafontaine DLJ, Orth M, Liss B, Parlato R. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death Dis 2021; 12:1139. [PMID: 34880223 PMCID: PMC8655027 DOI: 10.1038/s41419-021-04432-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.
Collapse
Affiliation(s)
- Aynur Sönmez
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Rasem Mustafa
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Salome T Ryll
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim and Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Donatella Ponti
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| | - Christian Litke
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Tanja Hering
- Department of Neurology, Ulm University, Ulm, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jenniver Koch
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Grzegorz Kreiner
- Maj Institute of Pharmacology, Department of Brain Biochemistry, Polish Academy of Sciences, Krakow, Poland
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre & New College, University of Oxford, Oxford, UK
| | - Rosanna Parlato
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|
4
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Liu Y, Wang Y, Yang L, Sun F, Li S, Wang Y, Zhang GA, Dong T, Zhang LL, Duan W, Zhang X, Cui W, Chen S. The nucleolus functions as the compartment for histone H2B protein degradation. iScience 2021; 24:102256. [PMID: 33796843 PMCID: PMC7995529 DOI: 10.1016/j.isci.2021.102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Histones are main components of chromatin, and the protein levels of histones significantly affect chromatin assembly. However, how histone protein levels are regulated, especially whether and how histones are degraded, is largely unclear. Here, we found that histone H2B is mainly degraded through the proteasome-mediated pathway, and the lysine-120 site of H2B is essential for its K48-linked polyubiquitination and degradation. Moreover, the degradation-impaired H2BK120R mutant shows an increased nucleolus localization, and inhibition of the proteasome results in an elevated nucleolus distribution of wild-type H2B, which is similar to that of H2BK120R mutants. More importantly, the nucleolus fractions can ubiquitinate and degrade the purified H2B in vitro, suggesting that the nucleolus, in addition to its canonical roles regulating ribosome genesis and protein translation, likely associates with H2B degradation. Therefore, these findings revealed a novel mechanism for the regulation of H2B degradation in which a nucleolus-associated proteasome pathway is involved. Histone H2B can be polyubiquitinated at the lysine 120 residue The degradation of histone H2B is achieved via the ubiquitination-proteasome pathway The nucleolus regulates the protein degradation of histone H2B
Collapse
Affiliation(s)
- Yanping Liu
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Yufei Wang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, Shanghai 200092, PR China
| | - Sheng Li
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yequan Wang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guo-An Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Tingting Dong
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Lei-Lei Zhang
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wanglin Duan
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
| | - Xiaojun Zhang
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Wen Cui
- School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China.,School of Forensic Sciences and Laboratory Medicine, Jining Medical University, Jining, Shandong 272067, PR China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China.,Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, Kaifeng, Henan 475004, PR China
| |
Collapse
|