1
|
Zhang Z, Chen J, Yao M, Wang G. Structural Insight Into the Function of DnaB Helicase in Bacterial DNA Replication. Proteins 2024. [PMID: 39230358 DOI: 10.1002/prot.26746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
In bacteria, chromosome replication is achieved by the coordinations of more than a dozen replisome enzymes. Replication initiation protein DnaA melts DNA duplex at replication origin (oriC) and forms a replication bubble, followed by loading of helicase DnaB with the help of loader protein DnaC. Then the DnaB helicase unwinds the dsDNA and supports the priming of DnaG and the polymerizing of DNA polymerase. The DnaB helicase functions as a platform coupling unwinding, priming, and polymerizing events. The multiple roles of DnaB helicase are underlined by its distinctive architecture and dynamics conformations. In this review, we will discuss the assembling of DnaB hexamer and the conformational changes upon binding of various partners, DnaB in states of closed dilated (CD), closed constricted (CC), closed helical (CH), and open helical (OH) are discussed. These multiple interfaces among DnaB and partners are potential targets for inhibitors design and novel peptide antibiotics development.
Collapse
Affiliation(s)
- Zhiming Zhang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Maochun Yao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
| |
Collapse
|
2
|
Tominaga K, Ozaki S, Sato S, Katayama T, Nishimura Y, Omae K, Iwasaki W. Frequent nonhomologous replacement of replicative helicase loaders by viruses in Vibrionaceae. Proc Natl Acad Sci U S A 2024; 121:e2317954121. [PMID: 38683976 PMCID: PMC11087808 DOI: 10.1073/pnas.2317954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Several microbial genomes lack textbook-defined essential genes. If an essential gene is absent from a genome, then an evolutionarily independent gene of unknown function complements its function. Here, we identified frequent nonhomologous replacement of an essential component of DNA replication initiation, a replicative helicase loader gene, in Vibrionaceae. Our analysis of Vibrionaceae genomes revealed two genes with unknown function, named vdhL1 and vdhL2, that were substantially enriched in genomes without the known helicase-loader genes. These genes showed no sequence similarities to genes with known function but encoded proteins structurally similar with a viral helicase loader. Analyses of genomic syntenies and coevolution with helicase genes suggested that vdhL1/2 encodes a helicase loader. The in vitro assay showed that Vibrio harveyi VdhL1 and Vibrio ezurae VdhL2 promote the helicase activity of DnaB. Furthermore, molecular phylogenetics suggested that vdhL1/2 were derived from phages and replaced an intrinsic helicase loader gene of Vibrionaceae over 20 times. This high replacement frequency implies the host's advantage in acquiring a viral helicase loader gene.
Collapse
Affiliation(s)
- Kento Tominaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Shohei Sato
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka812-8582, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Kimiho Omae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba277-0882, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba277-8564, Japan
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo113-8657, Japan
| |
Collapse
|
3
|
Blaine HC, Simmons LA, Stallings CL. Diverse Mechanisms of Helicase Loading during DNA Replication Initiation in Bacteria. J Bacteriol 2023; 205:e0048722. [PMID: 36877032 PMCID: PMC10128896 DOI: 10.1128/jb.00487-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Initiation of DNA replication is required for cell viability and passage of genetic information to the next generation. Studies in Escherichia coli and Bacillus subtilis have established ATPases associated with diverse cellular activities (AAA+) as essential proteins required for loading of the replicative helicase at replication origins. AAA+ ATPases DnaC in E. coli and DnaI in B. subtilis have long been considered the paradigm for helicase loading during replication in bacteria. Recently, it has become increasingly clear that most bacteria lack DnaC/DnaI homologs. Instead, most bacteria express a protein homologous to the newly described DciA (dnaC/dnaI antecedent) protein. DciA is not an ATPase, and yet it serves as a helicase operator, providing a function analogous to that of DnaC and DnaI across diverse bacterial species. The recent discovery of DciA and of other alternative mechanisms of helicase loading in bacteria has changed our understanding of DNA replication initiation. In this review, we highlight recent discoveries, detailing what is currently known about the replicative helicase loading process across bacterial species, and we discuss the critical questions that remain to be investigated.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Cargemel C, Marsin S, Noiray M, Legrand P, Bounoua H, Li de la Sierra-Gallay I, Walbott H, Quevillon-Cheruel S. The LH-DH module of bacterial replicative helicases is the common binding site for DciA and other helicase loaders. Acta Crystallogr D Struct Biol 2023; 79:177-187. [PMID: 36762863 PMCID: PMC9912922 DOI: 10.1107/s2059798323000281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
During the initiation step of bacterial genome replication, replicative helicases depend on specialized proteins for their loading onto oriC. DnaC and DnaI were the first loaders to be characterized. However, most bacteria do not contain any of these genes, which are domesticated phage elements that have replaced the ancestral and unrelated loader gene dciA several times during evolution. To understand how DciA assists the loading of DnaB, the crystal structure of the complex from Vibrio cholerae was determined, in which two VcDciA molecules interact with a dimer of VcDnaB without changing its canonical structure. The data showed that the VcDciA binding site on VcDnaB is the conserved module formed by the linker helix LH of one monomer and the determinant helix DH of the second monomer. Interestingly, DnaC from Escherichia coli also targets this module onto EcDnaB. Thanks to their common target site, it was shown that VcDciA and EcDnaC could be functionally interchanged in vitro despite sharing no structural similarity. This represents a milestone in understanding the mechanism employed by phage helicase loaders to hijack bacterial replicative helicases during evolution.
Collapse
Affiliation(s)
- Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Halil Bounoua
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91180 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Ozaki S, Wang D, Wakasugi Y, Itani N, Katayama T. The Caulobacter crescentus DciA promotes chromosome replication through topological loading of the DnaB replicative helicase at replication forks. Nucleic Acids Res 2022; 50:12896-12912. [PMID: 36484102 PMCID: PMC9825169 DOI: 10.1093/nar/gkac1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.
Collapse
Affiliation(s)
| | | | | | - Naoto Itani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Blaine HC, Burke JT, Ravi J, Stallings CL. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla. J Bacteriol 2022; 204:e0016322. [PMID: 35880876 PMCID: PMC9380583 DOI: 10.1128/jb.00163-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph T. Burke
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Genomics and Molecular Genetics Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Janani Ravi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|