Velasco‐Carneros L, Bernardo‐Seisdedos G, Maréchal J, Millet O, Moro F, Muga A. Pseudophosphorylation of single residues of the J-domain of DNAJA2 regulates the holding/folding balance of the Hsc70 system.
Protein Sci 2024;
33:e5105. [PMID:
39012012 PMCID:
PMC11249846 DOI:
10.1002/pro.5105]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.
Collapse