1
|
Makharadze D, Kantaria T, Yousef I, del Valle LJ, Katsarava R, Puiggalí J. PEGylated Micro/Nanoparticles Based on Biodegradable Poly(Ester Amides): Preparation and Study of the Core-Shell Structure by Synchrotron Radiation-Based FTIR Microspectroscopy and Electron Microscopy. Int J Mol Sci 2024; 25:6999. [PMID: 39000109 PMCID: PMC11241343 DOI: 10.3390/ijms25136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.
Collapse
Affiliation(s)
- Davit Makharadze
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
| | - Temur Kantaria
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Ibraheem Yousef
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290 Barcelona, Spain;
| | - Luis J. del Valle
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Tbilisi 0159, Georgia; (T.K.); (R.K.)
| | - Jordi Puiggalí
- Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain; (D.M.); (L.J.d.V.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Alkhuder K. Fourier-transform infrared spectroscopy: a universal optical sensing technique with auspicious application prospects in the diagnosis and management of autoimmune diseases. Photodiagnosis Photodyn Ther 2023; 42:103606. [PMID: 37187270 DOI: 10.1016/j.pdpdt.2023.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Autoimmune diseases (AIDs) are poorly understood clinical syndromes due to breakdown of immune tolerance towards specific types of self-antigens. They are generally associated with an inflammatory response mediated by lymphocytes T, autoantibodies or both. Ultimately, chronic inflammation culminates in tissue damages and clinical manifestations. AIDs affect 5% of the world population, and they represent the main cause of fatality in young to middle-aged females. In addition, the chronic nature of AIDs has a devastating impact on the patient's quality of life. It also places a heavy burden on the health care system. Establishing a rapid and accurate diagnosis is considered vital for an ideal medical management of these autoimmune disorders. However, for some AIDs, this task might be challenging. Vibrational spectroscopies, and more particularly Fourier-transform infrared (FTIR) spectroscopy, have emerged as universal analytical techniques with promising applications in the diagnosis of various types of malignancies and metabolic and infectious diseases. The high sensitivity of these optical sensing techniques and their minimal requirements for test reagents qualify them to be ideal analytical techniques. The aim of the current review is to explore the potential applications of FTIR spectroscopy in the diagnosis and management of most common AIDs. It also aims to demonstrate how this technique has contributed to deciphering the biochemical and physiopathological aspects of these chronic inflammatory diseases. The advantages that can be offered by this optical sensing technique over the traditional and gold standard methods used in the diagnosis of these autoimmune disorders have also been extensively discussed.
Collapse
|
3
|
Tian T, Zhang J, Xiong L, Yu H, Deng K, Liao X, Zhang F, Huang P, Zhang J, Chen Y. Evaluating Subtle Pathological Changes in Early Myocardial Ischemia Using Spectral Histopathology. Anal Chem 2022; 94:17112-17120. [PMID: 36442494 DOI: 10.1021/acs.analchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early myocardial ischemia (EMI) is morphologically challenging, and the results from conventional histological staining may be subjective, imprecise, or even silent. The size of myocardial necrosis determines the acute and long-term mortality of EMI. The precise diagnosis of myocardial ischemia is critical for both clinical management and forensic investigation. Fourier transform infrared (FTIR) spectroscopic imaging is a highly sensitive tool for detecting protein conformations and imaging protein profiles. The aim of this study was to evaluate the application of FTIR imaging with multivariate analysis to detect biochemical changes in the protein conformation in the early phase of myocardial ischemia and to visually classify different disease states. The spectra and curve fitting results revealed that the total protein content decreased significantly in the EMI group and that the α-helix content of the secondary protein structure continuously decreased as ischemia progressed, while the β-sheet content increased. Differences in the control and EMI groups and perfused and ischemic myocardium were confirmed using principal component analysis and partial least squares discriminant analysis. Next, two support vector machine classifiers were effectively created. The accuracy, recall, and precision were 99.98, 99.96, and 100.00%, respectively, to differentiate the EMI group from the control group and 99.25, 98.95, and 99.54%, respectively, to differentiate perfused and ischemic myocardium. Ultimately, high EMI diagnostic accuracy was achieved with 100.00% recall and 100.00% precision, and ischemic myocardium diagnostic accuracy was achieved with 99.30% recall and 99.53% precision for the test set. This pilot study demonstrated that FTIR imaging is a powerful automated quantitative analysis tool to detect EMI without morphological changes and will improve diagnostic accuracy and patient prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ling Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Haixing Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Yijiu Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| |
Collapse
|
4
|
Mert S, Sancak S, Aydın H, Fersahoğlu AT, Somay A, Özkan F, Çulha M. Development of a SERS based cancer diagnosis approach employing cryosectioned thyroid tissue samples on PDMS. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102577. [PMID: 35716872 DOI: 10.1016/j.nano.2022.102577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
An efficient SERS based novel analytical approach named Cryosectioned-PDMS was developed systematically and evaluated applying on 64 thyroid biopsy samples. To utilize thyroid biopsy samples, a 20-μl volume of h-AgNPs suspension was dropped on a 5-μm thick cryosectioned biopsy specimen placed on the PDMS coated glass slide. The SERS spectra from a 10 × 10 points array acquired by mapping 22.5 μm × 22.5 μm sized area from suspended dried droplets placed on the tissue surface. The probability of correctly predicted performance for diagnosis of malignant, benign and healthy tissues was resulted in the accuracy of 100 % for the spectral bands at 667, 724, 920, 960, 1052, 1096, 1315 and 1457 cm-1 using PCA-fed LDA machine learning. The Cryosectioned-PDMS biophotonic approach with PCA-LDA predictive model demonstrated that the vibrational signatures can accurately recognize the fingerprint of cancer pathology from a healthy one with a simple and fast sample preparation methodology.
Collapse
Affiliation(s)
- Sevda Mert
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey; Department of Genetics and Bioengineering, Faculty of Engineering, Istanbul Okan University, Istanbul 34959, Turkey
| | - Seda Sancak
- Department of Internal Medicine, Endocrinology and Metabolism Disorders, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Hasan Aydın
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yeditepe University Hospital, Istanbul 34752, Turkey
| | - Ayşe Tuba Fersahoğlu
- General Surgery Clinic, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Adnan Somay
- Department of Pathology, Fatih Sultan Mehmet Education and Research Hospital, University of Health Sciences, Istanbul 34752, Turkey
| | - Ferda Özkan
- Department of Pathology, Yeditepe University Hospital, Istanbul 34752, Turkey
| | - Mustafa Çulha
- The Knight Cancer Institute, Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health and Science University, Portland 97239, OR, USA; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Department of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
5
|
Mazza C, Gaydou V, Eymard JC, Birembaut P, Untereiner V, Côté JF, Brocheriou I, Coeffic D, Villena P, Larré S, Vuiblet V, Piot O. Identification of Neoadjuvant Chemotherapy Response in Muscle-Invasive Bladder Cancer by Fourier-Transform Infrared Micro-Imaging. Cancers (Basel) 2021; 14:cancers14010021. [PMID: 35008184 PMCID: PMC8750189 DOI: 10.3390/cancers14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Assessing the tumor response to chemotherapy is a paramount predictive step to improve patient care. Infrared spectroscopy probes the chemical composition of samples, and in combination with statistical multivariate processing, presents the capacity to highlight subtle molecular alterations associated with malignancy characteristics. Microscopic infrared imaging of tissue samples reveals spectral heterogeneity within histological structures, providing a new approach to characterize tumoral heterogeneity. We have taken advantage of the analytical capabilities of mid-infrared spectral imaging to implement a classification model to predict the response of a tumor to chemotherapy. Our development was demonstrated in muscle-invasive bladder cancer (MIBC) by comparing samples from responders and non-responders to neoadjuvant chemotherapy. Abstract Background: Neoadjuvant chemotherapy (NAC) improves survival in responder patients. However, for non-responders, the treatment represents an ineffective exposure to chemotherapy and its potential adverse events. Predicting the response to treatment is a major issue in the therapeutic management of patients, particularly for patients with muscle-invasive bladder cancer. Methods: Tissue samples of trans-urethral resection of bladder tumor collected at the diagnosis time, were analyzed by mid-infrared imaging. A sequence of spectral data processing was implemented for automatic recognition of informative pixels and scoring each pixel according to a continuous scale (from 0 to 10) associated with the response to NAC. The ground truth status of the responder or non-responder was based on histopathological examination of the samples. Results: Although the TMA spots of tumors appeared histologically homogeneous, the infrared approach highlighted spectral heterogeneity. Both the quantification of this heterogeneity and the scoring of the NAC response at the pixel level were used to construct sensitivity and specificity maps from which decision criteria can be extracted to classify cancerous samples. Conclusions: This proof-of-concept appears as the first to evaluate the potential of the mid-infrared approach for the prediction of response to neoadjuvant chemotherapy in MIBC tissues.
Collapse
Affiliation(s)
- Camille Mazza
- Jean Godinot Institute, 51100 Reims, France; (C.M.); (J.-C.E.)
| | - Vincent Gaydou
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
| | | | - Philippe Birembaut
- Department of Biopathology, University Hospital of Reims, 51100 Reims, France;
| | - Valérie Untereiner
- Cellular and Tissular Imaging Platform (PICT), Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Jean-François Côté
- Department of Biopathology, Hôpital de la Pitié-Salpêtrière, APHP, 51100 Paris, France; (J.-F.C.); (I.B.)
| | - Isabelle Brocheriou
- Department of Biopathology, Hôpital de la Pitié-Salpêtrière, APHP, 51100 Paris, France; (J.-F.C.); (I.B.)
| | - David Coeffic
- Polyclinique Courlancy, 51100 Reims, France; (D.C.); (P.V.)
| | | | - Stéphane Larré
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Department of Urology, University Hospital of Reims, 51100 Reims, France
| | - Vincent Vuiblet
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Department of Biopathology, University Hospital of Reims, 51100 Reims, France;
- Correspondence: (V.V.); (O.P.)
| | - Olivier Piot
- BioSpecT (Translational BioSpectroscopy) EA 7506, SFR Santé, Université de Reims Champagne-Ardenne, 51100 Reims, France; (V.G.); (S.L.)
- Cellular and Tissular Imaging Platform (PICT), Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (V.V.); (O.P.)
| |
Collapse
|
6
|
Kar S, Katti DR, Katti KS. Fourier transform infrared spectroscopy based spectral biomarkers of metastasized breast cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:85-96. [PMID: 30292907 DOI: 10.1016/j.saa.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Breast cancer is a global health issue and the second leading cause of cancer death in women. Breast cancer tends to migrate to bone and causes bone metastases which is ultimately the cause of death. Here, we report the use of FTIR to identify spectral biomarkers of cancer progression on 3D in vitro model of breast cancer bone metastasis. Our results indicate that the following spectral biomarkers can monitor cancer progression, for example, lipids (CH2 asymmetric/CH2 symmetric stretch), Amide I/Amide II, and RNA/DNA. Principal component analysis also confirmed the involvement of protein, lipids and nucleic acids in cancer progression on sequential culture. The collective observations from this study suggest successful application of FTIR as a non-invasive and accurate method to identify biochemical changes in cancer cells during the progression of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Sumanta Kar
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America
| | - Kalpana S Katti
- Department of Civil and Environmental Engineering, CIE 201, NDSU, Fargo, ND 58104, United States of America.
| |
Collapse
|
7
|
Siddiqui AJ, Sherazi STH, Ahmed S, Iqbal Choudhary M, Musharraf SG. A comparative profiling of oral cancer patients and high risk niswar users using FT-IR and chemometric analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:177-184. [PMID: 29864641 DOI: 10.1016/j.saa.2018.05.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Oral cancer is one of the major cancer types, which has increased sustainably in Southeast Asian countries due to the extensive use of a variety of tobacco and betel nut products. The current study is focused on developing an easy, efficient and cost-effective method for plasma profiling of oral cancer patients and tobacco users in order to have a progressive picture towards oral cancer. For this purpose, the profiling of 147 plasma samples including 67 oral cancer patients' samples, 60 "niswar" (a dipping tobacco product) user samples, and 20 healthy controls using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and chemometric analysis was carried out. Fingerprint region (500-1500 cm-1) of all three groups showed interesting variations in peaks pattern. From these observations, height ratios of two bands H1646/H1550 and H1080/H1024 with p value of 2.01 × 10-6 and 8.39 × 10-7, respectively, showed a pattern between healthy to oral cancer and "niswar" user samples. Chemometric analysis of the data showed a clean separation among the groups. PLS-DA and OPLS-DA models provided 87.7% and 89.5% classification rate, respectively. Area under the curve (AUC) for healthy control, oral cancer and "niswar" users were found to be 0.97, 0.95 and 0.92%, respectively. The results of the present study indicate that FT-IR spectroscopy, in conjunction with chemometric data, can be effectively used for the preliminary differentiation of plasma samples of oral cancer patients, "niswar" users and control samples of healthy persons.
Collapse
Affiliation(s)
- Amna Jabbar Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shakil Ahmed
- Industrial Analytical Centre (IAC), H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
8
|
Tiwari S, Raman J, Reddy V, Ghetler A, Tella RP, Han Y, Moon CR, Hoke CD, Bhargava R. Towards Translation of Discrete Frequency Infrared Spectroscopic Imaging for Digital Histopathology of Clinical Biopsy Samples. Anal Chem 2016; 88:10183-10190. [PMID: 27626947 DOI: 10.1021/acs.analchem.6b02754] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fourier transform infrared (FT-IR) spectroscopic imaging has been widely tested as a tool for stainless digital histology of biomedical specimens, including for the identification of infiltration and fibrosis in endomyocardial biopsy samples to assess transplant rejection. A major barrier in clinical translation has been the slow speed of imaging. To address this need, we tested and report here the viability of using high speed discrete frequency infrared (DFIR) imaging to obtain stain-free biochemical imaging in cardiovascular samples collected from patients. Images obtained by this method were classified with high accuracy by a Bayesian classification algorithm trained on FT-IR imaging data as well as on DFIR data. A single spectral feature correlated with instances of fibrosis, as identified by the pathologist, highlights the advantage of the DFIR imaging approach for rapid detection. The speed of digital pathologic recognition was at least 16 times faster than the fastest FT-IR imaging instrument. These results indicate that a fast, on-site identification of fibrosis using IR imaging has potential for real time assistance during surgeries. Further, the work describes development and applications of supervised classifiers on DFIR imaging data, comparing classifiers developed on FT-IR and DFIR imaging modalities and identifying specific spectral features for accurate identification of fibrosis. This addresses a topic of much debate on the use of training data and cross-modality validity of IR measurements. Together, the work is a step toward addressing a clinical diagnostic need at acquisition time scales that make IR imaging technology practical for medical use.
Collapse
Affiliation(s)
- Saumya Tiwari
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jai Raman
- Knight Cardiovascular Institute, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, United States
| | - Vijaya Reddy
- Department of Pathology, Rush University Medical Center , 1725 West Harrison Street, Chicago, Illinois 60612, United States
| | - Andrew Ghetler
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Richard P Tella
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Yang Han
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Christopher R Moon
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Charles D Hoke
- California Research Center, Spectroscopy and Vacuum Solutions Division, Agilent Technologies, Inc. , 5301 Stevens Creek Blvd., Santa Clara, California 95051 United States
| | - Rohit Bhargava
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Departments of Chemistry, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
A decade (2004 – 2014) of FTIR prostate cancer spectroscopy studies: An overview of recent advancements. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev 2016; 45:1935-57. [PMID: 26996636 DOI: 10.1039/c5cs00846h] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared chemical imaging is a rapidly emerging field with new advances in instrumentation, data acquisition and data analysis. These developments have had significant impact in biomedical applications and numerous studies have now shown that this technology offers great promise for the improved diagnosis of the diseased state. Relying on purely biochemical signatures rather than contrast from exogenous dyes and stains, infrared chemical imaging has the potential to revolutionise histopathology for improved disease diagnosis. In this review we discuss the recent advances in infrared spectroscopic imaging specifically related to spectral histopathology (SHP) and consider the current state of the field. Finally we consider the practical application of SHP for disease diagnosis and consider potential barriers to clinical translation highlighting current directions and the future outlook.
Collapse
Affiliation(s)
- Michael Pilling
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | |
Collapse
|
11
|
Bunaciu AA, Hoang VD, Aboul-Enein HY. Applications of FT-IR Spectrophotometry in Cancer Diagnostics. Crit Rev Anal Chem 2015; 45:156-65. [DOI: 10.1080/10408347.2014.904733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Kochan K, Heraud P, Kiupel M, Yuzbasiyan-Gurkan V, McNaughton D, Baranska M, Wood BR. Comparison of FTIR transmission and transfection substrates for canine liver cancer detection. Analyst 2015; 140:2402-11. [DOI: 10.1039/c4an01901f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
FTIR spectroscopy is a widely used technique that provides insights into disease processes at the molecular level.
Collapse
Affiliation(s)
- Kamila Kochan
- Faculty of Chemistry
- Jagiellonian University
- Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics
| | - Philip Heraud
- Centre for Biospectroscopy and School of Chemistry
- Monash University
- Victoria 3800
- Australia
- Multiple Sclerosis Research Group
| | - Matti Kiupel
- Diagnostic Center for Population and Animal Health
- Department of Pathobiology and Diagnostic Investigation
- Michigan State University
- Lansing
- USA
| | | | - Don McNaughton
- Centre for Biospectroscopy and School of Chemistry
- Monash University
- Victoria 3800
- Australia
| | - Malgorzata Baranska
- Faculty of Chemistry
- Jagiellonian University
- Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics
| | - Bayden R. Wood
- Centre for Biospectroscopy and School of Chemistry
- Monash University
- Victoria 3800
- Australia
| |
Collapse
|
13
|
Kumar S, R, Chaudhary S, S, Jain DC. Vibrational Studies of Different Human Body Disorders Using FTIR Spectroscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojapps.2014.43012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Lewis PD. Commentary on "Profiling serologic biomarkers in cirrhotic patients via high-throughput Fourier transform infrared spectroscopy: toward a new diagnostic tool of hepatocellular carcinoma". Transl Res 2013; 162:275-8. [PMID: 24035850 DOI: 10.1016/j.trsl.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Paul D Lewis
- Centre for NanoHealth, College of Medicine, Swansea University, UK.
| |
Collapse
|
15
|
Caine S, Heraud P, Tobin MJ, McNaughton D, Bernard CC. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage 2012; 59:3624-40. [DOI: 10.1016/j.neuroimage.2011.11.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 12/13/2022] Open
|
16
|
Khanmohammadi M, Garmarudi AB. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Sahu RK, Mordechai S. Spectral signatures of colonic malignancies in the mid-infrared region: from basic research to clinical applicability. Future Oncol 2011; 6:1653-67. [PMID: 21062162 DOI: 10.2217/fon.10.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The process of carcinogenesis in the colon progresses through several overlapping stages, making the evaluation process challenging, as well as subjective. Owing to the complexity of colonic tissues and the search for a technique that is rapid and foolproof for precise grading and evaluation of biopsies, many spectroscopic techniques have been evaluated in the past few decades for their efficiency and clinical compatibility. Fourier-transform infrared spectroscopy, being quantitative and objective, has the capacity for automation and relevance to cancer diagnosis. This article highlights investigations on the application of Fourier-transform infrared spectroscopy (particularly microscopy) in colon cancer diagnosis and parallel developments in data analysis techniques for the characterization of spectral signatures of malignant tissues in the colon.
Collapse
Affiliation(s)
- Ranjit K Sahu
- Center for Autoimmune & Musculoskeletal Disease, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
18
|
Lipid and Membrane Dynamics in Biological Tissues—Infrared Spectroscopic Studies. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2011. [DOI: 10.1016/b978-0-12-387721-5.00001-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:207-27. [DOI: 10.1097/spc.0b013e32833e8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|