1
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
2
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
3
|
Lin CW, Zheng T, Grande G, Nanna AR, Rader C, Lerner RA. A new immunochemical strategy for triple-negative breast cancer therapy. Sci Rep 2021; 11:14875. [PMID: 34290315 PMCID: PMC8295383 DOI: 10.1038/s41598-021-94230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly diverse group of malignant neoplasms which tend to have poor outcomes, and the development of new targets and strategies to treat these cancers is sorely needed. Antibody-drug conjugate (ADC) therapy has been shown to be a promising targeted therapy for treating many cancers, but has only rarely been tried in patients with TNBC. A major reason the efficacy of ADC therapy in the setting of TNBC has not been more fully investigated is the lack of appropriate target molecules. In this work we were able to identify an effective TNBC target for use in immunotherapy. We were guided by our previous observation that in some breast cancer patients the protein tropomyosin receptor kinase B cell surface protein (TrkB) had become immunogenic, suggesting that it was somehow sufficiently chemically different enough (presumably by mutation) to escaped immune tolerance. We postulated that this difference might well offer a means for selective targeting by antibodies. We engineered site-specific ADCs using a dual variable domain (DVD) format which combines anti-TrkB antibody with the h38C2 catalytic antibody. This format enables rapid, one-step, and homogeneous conjugation of β-lactam-derivatized drugs. Following conjugation to β-lactam-derivatized monomethyl auristatin F, the TrkB-targeting DVD-ADCs showed potency against multiple breast cancer cell lines, including TNBC cell lines. In addition, our isolation of antibody that specifically recognized the breast cancer-associated mutant form of TrkB, but not the wild type TrkB, indicates the possibility of further refining the selectivity of anti-TrkB DVD-ADCs, which should enhance their therapeutic index. These results confirmed our supposition that TrkB is a potential target for immunotherapy for TNBC, as well as for other cancers with mutated cell surface proteins.
Collapse
Affiliation(s)
- Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tianqing Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Qi J, Rader C. Redirecting cytotoxic T cells with chemically programmed antibodies. Bioorg Med Chem 2020; 28:115834. [PMID: 33166926 DOI: 10.1016/j.bmc.2020.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022]
Abstract
T-cell engaging bispecific antibodies (T-biAbs) mediate potent and selective cytotoxicity by combining specificities for target and effector cells in one molecule. Chemically programmed T-biAbs (cp-T-biAbs) are precisely assembled compositions of (i) small molecules that govern cancer cell surface targeting with high affinity and specificity and (ii) antibodies that recruit and activate T cells and equip the small molecule with confined biodistribution and longer circulatory half-life. Conceptually similar to cp-T-biAbs, switchable chimeric antigen receptor T cells (sCAR-Ts) can also be put under the control of small molecules by using a chemically programmed antibody as a bispecific adaptor molecule. As such, cp-T-biAbs and cp-sCAR-Ts can endow small molecules with the power of cancer immunotherapy. We here review the concept of chemically programmed antibodies for recruiting and activating T cells as a promising strategy for broadening the utility of small molecules in cancer therapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
5
|
Phage engineering and the evolutionary arms race. Curr Opin Biotechnol 2020; 68:23-29. [PMID: 33113495 DOI: 10.1016/j.copbio.2020.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Phages are versatile agents for delivering a variety of cargo, including nanomaterials, nucleic acids, and small molecules. A potentially important application is treatment of antibiotic-resistant infections. All of these applications require molecular engineering of the phages, including chemical modification and genetic engineering. Phages are remarkably amenable to such engineering. We review some examples, including for controlled phage therapy. We suggest that the ability of phages to support extensive engineering may have evolutionary origins in the billions-year-old 'arms race' between bacteria and phages, which selects for sequences and structures that are robust in the face of rapid evolutionary change. This leads to high tolerance of both naturally evolved mutations and synthetic molecular engineering.
Collapse
|
6
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
7
|
Qi J, Tsuji K, Hymel D, Burke TR, Hudecek M, Rader C, Peng H. Chemically Programmable and Switchable CAR‐T Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Kohei Tsuji
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
- Department of Medicinal Chemistry Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - David Hymel
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
| | - Terrence R. Burke
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II Universitätsklinikum Würzburg Oberdürrbacherstrasse 6 97080 Würzburg Germany
| | - Christoph Rader
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Haiyong Peng
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
8
|
Qi J, Tsuji K, Hymel D, Burke TR, Hudecek M, Rader C, Peng H. Chemically Programmable and Switchable CAR-T Therapy. Angew Chem Int Ed Engl 2020; 59:12178-12185. [PMID: 32329959 DOI: 10.1002/anie.202005432] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Although macromolecules on cell surfaces are predominantly targeted and drugged with antibodies, they harbor pockets that are only accessible to small molecules and constitutes a rich subset of binding sites with immense potential diagnostic and therapeutic utility. Compared to antibodies, however, small molecules are disadvantaged by a less confined biodistribution, shorter circulatory half-life, and inability to communicate with the immune system. Presented herein is a method that endows small molecules with the ability to recruit and activate chimeric antigen receptor T cells (CAR-Ts). It is based on a CAR-T platform that uses a chemically programmed antibody fragment (cp-Fab) as on/off switch. In proof-of-concept studies, this cp-Fab/CAR-T system targeting folate binding proteins on the cell surface mediated potent and specific eradication of folate-receptor-expressing cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA.,Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacherstrasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
9
|
Abstract
In this issue of Cell Chemical Biology, Hwang et al. (2019) describe a rapid, one-step, one-pot, and enzyme-free assembly strategy under mild conditions for site-specific conjugation of small molecules to antibodies. This is a promising platform for dual-warhead antibody-drug conjugates (ADCs) and other multifaceted antibody conjugates.
Collapse
Affiliation(s)
- Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| |
Collapse
|
10
|
Climacosa FMM, King RAN, Santos BMM, Caoili SEC. Development and Characterization of Polymeric Peptides for Antibody Tagging of Bacterial Targets. Protein Pept Lett 2020; 27:962-970. [PMID: 32342800 DOI: 10.2174/0929866527666200427212940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbe-Binding Peptides (MBPs) are currently being investigated to address the problem of antimicrobial resistance. Strategies enhancing their antimicrobial activity have been developed, including peptide dimerization. Here, we present an alternative approach based on peptide polymerization, yielding hapten-labelled polymeric MBPs that mediate tagging of bacteria with anti-hapten antibodies, for enhanced immune recognition by host phagocytes. METHODS C-terminally amidated analogs of the bacterial-binding peptide IIGGR were synthesized, with or without addition of cysteine residues at both N- and C-termini. Peptides were subjected to oxidizing conditions in a dimethyl-sulfoxide/water solvent system, and polymerization was demonstrated using SDS-PAGE. Peptides were then N-terminally labelled with a trinitrophenyl (TNP) group using trinitrobenzene sulfonate (TNBS). Binding to representative bacteria was demonstrated by ELISA using anti-TNP antibodies and was quantified as half-maximal effective concentration (EC50). Minimum Inhibitory Concentration (MIC) and concentration yielding 50% hemolysis (H50) were estimated. Neutrophil phagocytic index was determined for TNP-labelled polymeric bacterial- binding peptide (Pbac) with anti-TNP antibodies and/or serum complement. RESULTS Polydisperse Pbac was synthesized. EC50 was lower for Pbac than for the corresponding monomeric form (Mbac), for both Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. MIC and H50 were >250μg/mL for both Pbac and Mbac. A complement-independent increase in neutrophil phagocytic index was observed for E. coli treated with TNP-labelled Pbac in conjunction with anti-TNP antibodies. CONCLUSION Our data suggest that hapten-labelled polymeric bacterial-binding peptides may easily be produced from even crude synthetic oligopeptide precursors, and that such bacterial-binding peptides in conjunction with cognate anti-hapten antibodies can enhance immune recognition of bacteria by host phagocytes.
Collapse
Affiliation(s)
- Fresthel Monica M Climacosa
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines,Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ruby Anne N King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Bobbie Marie M Santos
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines,Department of Ophthalmology and Visual Sciences, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| |
Collapse
|
11
|
Hwang D, Tsuji K, Park H, Burke TR, Rader C. Site-Specific Lysine Arylation as an Alternative Bioconjugation Strategy for Chemically Programmed Antibodies and Antibody-Drug Conjugates. Bioconjug Chem 2019; 30:2889-2896. [PMID: 31675216 DOI: 10.1021/acs.bioconjchem.9b00609] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By exploiting a uniquely reactive lysine residue (Lys99) for site-specific attachment of small molecules, the humanized catalytic antibody h38C2 has been used as bioconjugation module in the assembly of chemically programmed antibodies and antibody-drug conjugates. Treatment of h38C2 with β-lactam-functionalized small molecules has been previously shown to result in covalent conjugation by selective formation of a stable amide bond with the ε-amino group of the Lys99 residue. Here we report that heteroaryl methylsulfonyl (MS-PODA)-functionalized small molecules represent an alternative bioconjugation strategy through highly efficient, site-specific, and stable arylation of the Lys99 residue. A set of chemically programmed antibodies and antibody-drug conjugates assembled by Lys99 arylation provided proof-of-concept for the therapeutic utility of this alternative bioconjugation strategy. While being equally effective as β-lactam-functionalized ligands for bioconjugation with catalytic antibody h38C2, the MS-PODA moiety offers distinct synthetic advantages, making it highly attractive.
Collapse
Affiliation(s)
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | | | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Frederick , Maryland 21702 , United States
| | | |
Collapse
|
12
|
Qi J, Hymel D, Nelson CG, Burke TR, Rader C. Conventional and Chemically Programmed Asymmetric Bispecific Antibodies Targeting Folate Receptor 1. Front Immunol 2019; 10:1994. [PMID: 31497024 PMCID: PMC6712926 DOI: 10.3389/fimmu.2019.01994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
T-cell engaging bispecific antibodies (biAbs) can mediate potent and specific tumor cell eradication in liquid cancers. Substantial effort has been invested in expanding this concept to solid cancers. To explore their utility in the treatment of ovarian cancer, we built a set of asymmetric biAbs in IgG1-like format that bind CD3 on T cells with a conventional scFv arm and folate receptor 1 (FOLR1) on ovarian cancer cells with a conventional or a chemically programmed Fab arm. For avidity engineering, we also built an asymmetric biAb format with a tandem Fab arm. We show that both conventional and chemically programmed CD3 × FOLR1 biAbs exert specific in vitro and in vivo cytotoxicity toward FOLR1-expressing ovarian cancer cells by recruiting and activating T cells. While the conventional T-cell engaging biAb was curative in an aggressive mouse model of human ovarian cancer, the potency of the chemically programmed biAb was significantly boosted by avidity engineering. Both conventional and chemically programmed CD3 × FOLR1 biAbs warrant further investigation for ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christopher G Nelson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
13
|
Hwang D, Nilchan N, Nanna AR, Li X, Cameron MD, Roush WR, Park H, Rader C. Site-Selective Antibody Functionalization via Orthogonally Reactive Arginine and Lysine Residues. Cell Chem Biol 2019; 26:1229-1239.e9. [PMID: 31231031 DOI: 10.1016/j.chembiol.2019.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Homogeneous antibody-drug conjugates (ADCs) that use a highly reactive buried lysine (Lys) residue embedded in a dual variable domain (DVD)-IgG1 format can be assembled with high precision and efficiency under mild conditions. Here we show that replacing the Lys with an arginine (Arg) residue affords an orthogonal ADC assembly that is site-selective and stable. X-ray crystallography confirmed the location of the reactive Arg residue at the bottom of a deep pocket. As the Lys-to-Arg mutation is confined to a single residue in the heavy chain of the DVD-IgG1, heterodimeric assemblies that combine a buried Lys in one arm, a buried Arg in the other arm, and identical light chains, are readily assembled. Furthermore, the orthogonal conjugation chemistry enables the loading of heterodimeric DVD-IgG1s with two different cargos in a one-pot reaction and thus affords a convenient platform for dual-warhead ADCs and other multifaceted antibody conjugates.
Collapse
Affiliation(s)
- Dobeen Hwang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alex R Nanna
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohai Li
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - HaJeung Park
- X-Ray Crystallography Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
14
|
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234:16724-16738. [PMID: 30908646 DOI: 10.1002/jcp.28490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody-siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Engineering Dual Variable Domains for the Generation of Site-Specific Antibody-Drug Conjugates. Methods Mol Biol 2019; 2033:39-52. [PMID: 31332746 DOI: 10.1007/978-1-4939-9654-4_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Site-specific antibody-drug conjugate (ADC) technologies are highly desirable for the production of therapeutics with well-defined biochemical and pharmacological characteristics. We have developed a strategy to produce site-specific ADCs using a highly reactive lysine residue embedded in a dual-variable-domain (DVD) format. Here we provide protocols for the engineering, expression, and purification of the DVDs used for this strategy. We also provide a protocol for DVD-drug conjugation and describe methods for their biochemical characterization, including a catalytic assay to monitor conjugation efficiency.
Collapse
|
16
|
Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene. Future Sci OA 2018; 4:FSO275. [PMID: 29568564 PMCID: PMC5859341 DOI: 10.4155/fsoa-2017-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
The contemporary Anthropocene is characterized by rapidly evolving complex global challenges to planetary health vis-a-vis sustainable development, yet innovation is constrained under the prevailing precautionary regime that regulates technological change. Small-molecule xenobiotic drugs are amenable to efficient large-scale industrial synthesis; but their pharmacokinetics, pharmacodynamics, interactions and ultimate ecological impact are difficult to predict, raising concerns over initial testing and environmental contamination. Antibodies and similar agents can serve as antidotes and drug buffers or vehicles to address patient safety and decrease dosing requirements. More generally, peptidic agents including synthetic peptide-based constructs exemplified by vaccines can be used together with or instead of nonpeptidic xenobiotics, thus enabling advances in planetary health based on principles of green chemistry from manufacturing through final disposition. Radical change in the role of humans as planetary custodians is necessary for the long-term well-being of all life. Drugs currently in use and under development tend to be foreign substances whose effects on both body and environment are difficult to predict. Antibodies and related molecules can lessen the safety hazards posed by said drugs, in part by decreasing the requirement for drug intake. More generally, proteins and peptides can be produced and used (notably as vaccine components) in line with green (i.e., eco-friendly) chemistry to better address health needs, alongside or even in place of said drugs.
Collapse
|
17
|
Roy S, Axup JY, Forsyth JS, Goswami RK, Hutchins BM, Bajuri KM, Kazane SA, Smider VV, Felding BH, Sinha SC. SMI-Ribosome inactivating protein conjugates selectively inhibit tumor cell growth. Chem Commun (Camb) 2018; 53:4234-4237. [PMID: 28357420 DOI: 10.1039/c7cc00745k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-targeting conjugates of Saporin 6, a ribosome inactivating protein (RIP), were prepared using the Saporin Ala 157 Cys mutant, a small molecule inhibitor (SMI) of integrins αvβ3/αvβ5, and a potent cytotoxin, auristatin F (AF). The conjugates selectively and potently inhibited proliferation of tumor cells expressing the target integrins. We anticipate that the small molecule-RIP bioconjugate approach can be broadly applied using other small molecule drugs.
Collapse
Affiliation(s)
- Saumya Roy
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou Q. Site-Specific Antibody Conjugation for ADC and Beyond. Biomedicines 2017; 5:biomedicines5040064. [PMID: 29120405 PMCID: PMC5744088 DOI: 10.3390/biomedicines5040064] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Antibody-drug conjugates (ADCs) have become a promising class of antitumor agents with four conjugates being approved by regulatory agencies for treating cancer patients. To improve the conventional conjugations that are currently applied to generate these heterogeneous products, various site-specific approaches have been developed. These methods couple cytotoxins or chemotherapeutic drugs to specifically defined sites in antibody molecules including cysteine, glutamine, unnatural amino acids, short peptide tags, and glycans. The ADCs produced showed high homogeneity, increased therapeutic index, and strong antitumor activities in vitro and in vivo. Moreover, there are recent trends in using these next generation technologies beyond the cytotoxin-conjugated ADC. These site-specific conjugations have been applied for the generation of many different immunoconjugates including bispecific Fab or small molecule–antibody conjugates, immunosuppressive antibodies, and antibody–antibiotic conjugates. Thus, it is likely that additional technologies and related site-specific conjugates will emerge in the near future, with various chemicals or small molecular weight proteins in addition to cytotoxin for better treatment of many challenging diseases.
Collapse
Affiliation(s)
- Qun Zhou
- Protein Engineering, Biologics Research, Sanofi, Framingham, MA 01701, USA.
| |
Collapse
|
19
|
Nagano M, Carrillo N, Otsubo N, Hakamata W, Ban H, Fuller RP, Bashiruddin NK, Barbas CF. In vivo programming of endogenous antibodies via oral administration of adaptor ligands. Bioorg Med Chem 2017; 25:5952-5961. [DOI: 10.1016/j.bmc.2017.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023]
|
20
|
Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nat Commun 2017; 8:1112. [PMID: 29062027 PMCID: PMC5653646 DOI: 10.1038/s41467-017-01257-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023] Open
Abstract
Current strategies to produce homogeneous antibody-drug conjugates (ADCs) rely on mutations or inefficient conjugation chemistries. Here we present a strategy to produce site-specific ADCs using a highly reactive natural buried lysine embedded in a dual variable domain (DVD) format. This approach is mutation free and drug conjugation proceeds rapidly at neutral pH in a single step without removing any charges. The conjugation chemistry is highly robust, enabling the use of crude DVD for ADC preparation. In addition, this strategy affords the ability to precisely monitor the efficiency of drug conjugation with a catalytic assay. ADCs targeting HER2 were prepared and demonstrated to be highly potent and specific in vitro and in vivo. Furthermore, the modular DVD platform was used to prepare potent and specific ADCs targeting CD138 and CD79B, two clinically established targets overexpressed in multiple myeloma and non-Hodgkin lymphoma, respectively. Current strategies for producing antibody-drug conjugates often rely on inefficient conjugation chemistry or on generating mutations in the antibody sequence. Here the authors demonstrate a mutation-free, single-step conjugation platform utilizing a buried lysine residue.
Collapse
|
21
|
Patterson JT, Isaacson J, Kerwin L, Atassi G, Duggal R, Bresson D, Zhu T, Zhou H, Fu Y, Kaufmann GF. PSMA-targeted bispecific Fab conjugates that engage T cells. Bioorg Med Chem Lett 2017; 27:5490-5495. [PMID: 29126850 DOI: 10.1016/j.bmcl.2017.09.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/06/2023]
Abstract
Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity.
Collapse
Affiliation(s)
- James T Patterson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| | - Jason Isaacson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Ghazi Atassi
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Rohit Duggal
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Damien Bresson
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Tong Zhu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Heyue Zhou
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Yanwen Fu
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA
| | - Gunnar F Kaufmann
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, USA.
| |
Collapse
|
22
|
Dirksen A, Davis KA, Collins JT, Bhattacharya K, Finneman JI, Pepin EL, Ryczek JS, Brown PW, Wellborn WB, Mangalathillam R, Evans BP, Pozzo MJ, Finn RF. Process development of a FGF21 protein-antibody conjugate. Biopolymers 2017; 110. [PMID: 28948603 DOI: 10.1002/bip.23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Abstract
A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21A129C dimerization and stabilizing the FGF21A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21A129C dimerization through disulfide formation was eliminated. FGF21A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance (DS), while maintaining the same overall process yield based on antibody scaffold input.
Collapse
Affiliation(s)
- Anouk Dirksen
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Keith A Davis
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Joe T Collins
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Keshab Bhattacharya
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Jari I Finneman
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Erin L Pepin
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Jeffrey S Ryczek
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Paul W Brown
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Analytical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - William B Wellborn
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Ratish Mangalathillam
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Brad P Evans
- Pfizer Inc. -BioTherapeutics Pharmaceutical Sciences: Statistics, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Mark J Pozzo
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| | - Rory F Finn
- Pfizer Inc.-BioTherapeutics Pharmaceutical Sciences: Bioprocess R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017
| |
Collapse
|
23
|
Muraki M, Hirota K. Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene - methyltetrazine reactions. BMC Biotechnol 2017; 17:56. [PMID: 28673349 PMCID: PMC5496246 DOI: 10.1186/s12896-017-0381-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Fas ligand plays a key role in the human immune system as a major cell death inducing protein. The extracellular domain of human Fas ligand (hFasLECD) triggers apoptosis of malignant cells, and therefore is expected to have substantial potentials in medical biotechnology. However, the current application of this protein to clinical medicine is hampered by a shortage of the benefits relative to the drawbacks including the side-effects in systemic administration. Effective procedures for the engineering of the protein by attaching useful additional functions are required to overcome the problem. Results A procedure for the site-specific chemical conjugation of hFasLECD with a fluorochrome and functional proteins was devised using an inverse-electron-demand Diels-Alder reaction between trans-cyclooctene group and methyltetrazine group. The conjugations in the present study were attained by using much less molar excess amounts of the compounds to be attached as compared with the conventional chemical modification reactions using maleimide derivatives in the previous study. The isolated conjugates of hFasLECD with sulfo-Cy3, avidin and rabbit IgG Fab’ domain presented the functional and the structural integrities of the attached molecules without impairing the specific binding activity toward human Fas receptor extracellular domain. Conclusions The present study provided a new fundamental strategy for the production of the engineered hFasLECDs with additional beneficial functions, which will lead to the developments of the improved diagnostic systems and the effective treatment methods of serious diseases by using this protein as a component of novel molecular tools. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0381-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michiro Muraki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kiyonori Hirota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
24
|
Li X, Nelson CG, Nair RR, Hazlehurst L, Moroni T, Martinez-Acedo P, Nanna AR, Hymel D, Burke TR, Rader C. Stable and Potent Selenomab-Drug Conjugates. Cell Chem Biol 2017; 24:433-442.e6. [PMID: 28330604 DOI: 10.1016/j.chembiol.2017.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 12/16/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023]
Abstract
Selenomabs are engineered monoclonal antibodies with one or more translationally incorporated selenocysteine residues. The unique reactivity of the selenol group of selenocysteine permits site-specific conjugation of drugs. Compared with other natural and unnatural amino acid and carbohydrate residues that have been used for the generation of site-specific antibody-drug conjugates, selenocysteine is particularly reactive, permitting fast, single-step, and efficient reactions under near physiological conditions. Using a tailored conjugation chemistry, we generated highly stable selenomab-drug conjugates and demonstrated their potency and selectivity in vitro and in vivo. These site-specific antibody-drug conjugates built on a selenocysteine interface revealed broad therapeutic utility in liquid and solid malignancy models.
Collapse
Affiliation(s)
- Xiuling Li
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Nelson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Rajesh R Nair
- Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lori Hazlehurst
- Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Tina Moroni
- Proteomics and Mass Spectrometry Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Pablo Martinez-Acedo
- Proteomics and Mass Spectrometry Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alex R Nanna
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christoph Rader
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Walseng E, Nelson CG, Qi J, Nanna AR, Roush WR, Goswami RK, Sinha SC, Burke TR, Rader C. Chemically Programmed Bispecific Antibodies in Diabody Format. J Biol Chem 2016; 291:19661-73. [PMID: 27445334 DOI: 10.1074/jbc.m116.745588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Chemically programmed bispecific antibodies (biAbs) endow target cell-binding small molecules with the ability to recruit and activate effector cells of the immune system. Here we report a platform of chemically programmed biAbs aimed at redirecting cytotoxic T cells to eliminate cancer cells. Two different antibody technologies were merged together to make a novel chemically programmed biAb. This was achieved by combining the humanized anti-hapten monoclonal antibody (mAb) h38C2 with the humanized anti-human CD3 mAb v9 in a clinically investigated diabody format known as Dual-Affinity Re-Targeting (DART). We show that h38C2 × v9 DARTs can readily be equipped with tumor-targeting hapten-derivatized small molecules without causing a systemic response harming healthy tissues. As a proof of concept, we chemically programmed h38C2 × v9 with hapten-folate and demonstrated its selectivity and potency against folate receptor 1 (FOLR1)-expressing ovarian cancer cells in vitro and in vivo Unlike conventional biAbs, chemically programmed biAbs in DART format are highly modular with broad utility in terms of both target and effector cell engagement. Most importantly, they provide tumor-targeting compounds access to the power of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Christopher G Nelson
- the Chemical Biology Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | | | - Alex R Nanna
- From the Departments of Cancer Biology, Chemistry, and
| | | | - Rajib K Goswami
- the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Subhash C Sinha
- the Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Terrence R Burke
- the Chemical Biology Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Christoph Rader
- From the Departments of Cancer Biology, Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458,
| |
Collapse
|
26
|
Jeanne A, Schneider C, Martiny L, Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front Pharmacol 2015; 6:252. [PMID: 26578962 PMCID: PMC4625054 DOI: 10.3389/fphar.2015.00252] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a large matricellular glycoprotein known to be overexpressed within tumor stroma in several cancer types. While mainly considered as an endogenous angiogenesis inhibitor, TSP-1 exhibits multifaceted functionalities in a tumor context depending both on TSP-1 concentration as well as differential receptor expression by cancer cells and on tumor-associated stromal cells. Besides, the complex modular structure of TSP-1 along with the wide variety of its soluble ligands and membrane receptors considerably increases the complexity of therapeutically targeting interactions involving TSP-1 ligation of cell-surface receptors. Despite the pleiotropic nature of TSP-1, many different antireceptor strategies have been developed giving promising results in preclinical models. However, transition to clinical trials often led to nuanced outcomes mainly due to frequent severe adverse effects. In this review, we will first expose the intricate and even sometimes opposite effects of TSP-1-related signaling on tumor progression by paying particular attention to modulation of angiogenesis and tumor immunity. Then, we will provide an overview of current developments and prospects by focusing particularly on the cell-surface molecules CD47 and CD36 that function as TSP-1 receptors; including antibody-based approaches, therapeutic gene modulation and the use of peptidomimetics. Finally, we will discuss original approaches specifically targeting TSP-1 domains, as well as innovative combination strategies with a view to producing an overall anticancer response.
Collapse
Affiliation(s)
- Albin Jeanne
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France ; SATT Nord Lille, France
| | - Christophe Schneider
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Laurent Martiny
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| | - Stéphane Dedieu
- Laboratoire SiRMa, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne Reims, France ; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369 Reims, France
| |
Collapse
|
27
|
Affiliation(s)
- Christoph Rader
- Departments of Cancer Biology and Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
28
|
|
29
|
Magliani W, Giovati L, Ciociola T, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as a source of anti-infective peptides: an update. Future Microbiol 2015; 10:1163-75. [PMID: 26119210 DOI: 10.2217/fmb.15.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This review focuses on antibodies (Abs) and their function in immune protection, with particular emphasis on microbicidal Abs. Some aspects of Abs and Ab-drug conjugates as targeting therapeutic agents are also discussed. The main aim, however, is devoted to Ab-derived peptides modulating functions of the immune system and to the latest experimental evidence of Abs as a source of anti-infective and antitumor peptides derived from their complementarity determining regions and constant regions.
Collapse
Affiliation(s)
- Walter Magliani
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
30
|
Liu Y, Goswami RK, Liu C, Sinha SC. Chemically Programmed Bispecific Antibody Targeting Legumain Protease and αvβ3 Integrin Mediates Strong Antitumor Effects. Mol Pharm 2015; 12:2544-50. [PMID: 26024761 DOI: 10.1021/acs.molpharmaceut.5b00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A chemically programmed bispecific antibody (cp-bsAb) that targeted cysteine protease legumain and αvβ3 integrin has been prepared using the aldolase antibody chemical programming (AACP) strategy. In vitro evaluation of the anti-legumain, anti-integrin cp-bsAb and its comparison with cpAbs targeting either integrin or legumain have shown that the former possesses superior functions, including receptor binding and inhibitory effects on cell proliferation as well as capillary tube formation, among all three cpAbs. The anti-legumain, anti-integrin cp-bsAb also inhibited growth of primary tumor more effectively than either anti-legumain or anti-integrin cpAb as observed in the MDA-MB-231 human breast cancer mouse model. The AACP-based cp-bsAb, which contains a generic aldolase antibody, can also serve as a suitable platform for combination therapy, where two equally potent compounds are used to target extracellular receptors.
Collapse
Affiliation(s)
- Yuan Liu
- †Departments of Immunology and Microbial Sciences and §Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Rajib K Goswami
- †Departments of Immunology and Microbial Sciences and §Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cheng Liu
- †Departments of Immunology and Microbial Sciences and §Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Subhash C Sinha
- †Departments of Immunology and Microbial Sciences and §Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Deonarain MP, Yahioglu G, Stamati I, Marklew J. Emerging formats for next-generation antibody drug conjugates. Expert Opin Drug Discov 2015; 10:463-81. [PMID: 25797303 DOI: 10.1517/17460441.2015.1025049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antibody drug conjugates now make up a significant fraction of biopharma's oncology pipeline due to great advances in the understanding of the three key components and how they should be optimised together. With this clinical success comes innovation to produce new enabling technologies that can deliver more effective antibody-drug conjugates (ADCs) with a larger therapeutic index. AREAS COVERED There are many reviews that discuss the various strategies for ADCs design but the last 5 years or so have witnessed the emergence of a number of different antibody formats compete with the standard whole immunoglobulin. Using published research, patent applications and conference disclosures, the authors review the many antibody and antibody-like formats, discussing innovations in protein engineering and how these new formats impact on the conjugation strategy and ultimately the performance. The alternative chemistries that are now available offer new linkages, stability profiles, drug:antibody ratio, pharmacokinetics and efficacy. The different sizes being considered promise to address issues, such as tumour penetration, circulatory half-life and side-effects. EXPERT OPINION ADCs are at the beginning of the next stage in their evolution and as these newer formats are developed and examined in the clinic, we will discover if the predicted features have a clinical benefit. From the commercial activity, it is envisaged that smaller or fragment-based ADCs will expand oncological applications.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, Herts, SG1 2FX , UK
| | | | | | | |
Collapse
|
32
|
AlDeghaither D, Smaglo BG, Weiner LM. Beyond peptides and mAbs--current status and future perspectives for biotherapeutics with novel constructs. J Clin Pharmacol 2015; 55 Suppl 3:S4-20. [PMID: 25707963 PMCID: PMC4340091 DOI: 10.1002/jcph.407] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022]
Abstract
Biotherapeutics are attractive anti-cancer agents due to their high specificity and limited toxicity compared to conventional small molecules. Antibodies are widely used in cancer therapy, either directly or conjugated to a cytotoxic payload. Peptide therapies, though not as prevalent, have been utilized in hormonal therapy and imaging. The limitations associated with unmodified forms of both types of biotherapeutics have led to the design and development of novel structures, which incorporate key features and structures that have improved the molecules' abilities to bind to tumor targets, avoid degradation, and exhibit favorable pharmacokinetics. In this review, we highlight the current status of monoclonal antibodies and peptides, and provide a perspective on the future of biotherapeutics using novel constructs.
Collapse
Affiliation(s)
- Dalal AlDeghaither
- Georgetown Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC 20057
| | - Brandon G Smaglo
- Medstar Georgetown University Hospital, Department of Medicine, Division of Hematology/Oncology, 3800 Reservoir Road NW, Washington DC 20007
| | - Louis M. Weiner
- Georgetown Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington DC 20057
| |
Collapse
|
33
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Ying T, Gong R, Ju TW, Prabakaran P, Dimitrov DS. Engineered Fc based antibody domains and fragments as novel scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1977-1982. [PMID: 24792384 PMCID: PMC4185235 DOI: 10.1016/j.bbapap.2014.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) have been successful for the therapy of a number of diseases mostly cancer and immune disorders. However, the vast majority of mAbs approved for clinical use are full size, typically in IgG1 format. These mAbs may exhibit relatively poor tissue penetration and restricted epitope access due to their large size. A promising solution to this fundamental limitation is the engineering of smaller scaffolds based on the IgG1 Fc region. These scaffolds can be used for the generation of libraries of mutants from which high-affinity binders can be selected. Comprised of the CH2 and CH3 domains, the Fc region is important not only for the antibody effector function but also for its long half-life. This review focuses on engineered Fc based antibody fragments and domains including native (dimeric) Fc and monomeric Fc as well as CH2 and monomeric CH3, and their use as novel scaffolds and binders. The Fc based binders are promising candidate therapeutics with optimized half-life, enhanced tissue penetration and access to sterically restricted binding sites resulting in an increased therapeutic efficacy. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Tianlei Ying
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Rui Gong
- Antibody Engineering Group, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tina W Ju
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Ponraj Prabakaran
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Group, Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD 21702, USA
| |
Collapse
|
35
|
Patterson JT, Asano S, Li X, Rader C, Barbas CF. Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug Chem 2014; 25:1402-7. [PMID: 25099687 PMCID: PMC4140540 DOI: 10.1021/bc500276m] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Current routes for synthesizing antibody–drug
conjugates
commonly rely on maleimide linkers to react with cysteine thiols.
However, thioether exchange with metabolites and serum proteins can
compromise conjugate stability and diminish in vivo efficacy. We report the application of a phenyloxadiazole sulfone
linker for the preparation of trastuzumab conjugates. This sulfone
linker site-specifically labeled engineered cysteine residues in THIOMABs
and improved antibody conjugate stability in human plasma at sites
previously shown to be labile for maleimide conjugates. Similarly,
sulfone conjugation with selenocysteine in an anti-ROR1 scFv-Fc improved
human plasma stability relative to maleimide conjugation. Kinetically
controlled labeling of a THIOMAB containing two cysteine substitutions
was also achieved, offering a strategy for producing antibody conjugates
with expanded valency.
Collapse
Affiliation(s)
- James T Patterson
- The Skaggs Institute for Chemical Biology, Department of Chemistry, and Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|