1
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
2
|
Gutfreund C, Betz K, Abramov M, Coosemans F, Holliger P, Herdewijn P, Marx A. Structural insights into a DNA polymerase reading the xeno nucleic acid HNA. Nucleic Acids Res 2025; 53:gkae1156. [PMID: 39673482 PMCID: PMC11724289 DOI: 10.1093/nar/gkae1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024] Open
Abstract
Xeno nucleic acids (XNAs) are unnatural analogues of the natural nucleic acids in which the canonical ribose or deoxyribose rings are replaced with alternative sugars, congener structures or even open-ring configurations. The expanding repertoire of XNAs holds significant promise for diverse applications in molecular biology as well as diagnostics and therapeutics. Key advantages of XNAs over natural nucleic acids include their enhanced biostability, superior target affinity and (in some cases) catalytic activity. Natural systems generally lack the mechanisms to transcribe, reverse transcribe or replicate XNAs. This limitation has been overcome through the directed evolution of nucleic acid-modifying enzymes, especially polymerases (pols) and reverse transcriptases (RTs). Despite these advances, the mechanisms by which synthetic RT enzymes read these artificial genetic polymers remain largely unexplored, primarily due to a scarcity of structural information. This study unveils first structural insights into an evolved thermostable DNA pol interacting with the XNA 1,5-anhydrohexitol nucleic acid (HNA), revealing unprecedented HNA nucleotide conformations within a ternary complex with the enzyme. These findings not only deepen our understanding of HNA to DNA reverse transcription but also set the stage for future advancements of this and similar enzymes through deliberate design.
Collapse
Affiliation(s)
- Cédric Gutfreund
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mikhail Abramov
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Frédérick Coosemans
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Phillipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Piet Herdewijn
- Department of Medicinal Chemistry, KU Leuven, Herestraat 49 BOX 1030, 3000 Leuven, Belgium
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Vecchioni S, Lo R, Huang Q, Wang K, Ohayon YP, Sha R, Rothschild LJ, Wind SJ. Silver(I)-Mediated 2D DNA Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407604. [PMID: 39564738 DOI: 10.1002/smll.202407604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Structural DNA nanotechnology enables the self-organization of matter at the nanometer scale, but approaches to expand the inorganic and electrical functionality of these scaffolds remain limited. Developments in nucleic acid metallics have enabled the incorporation of site-specific metal ions in DNA duplexes and provide a means of functionalizing the double helix with atomistic precision. Here a class of 2D DNA nanostructures that incorporate the cytosine-Ag+-cytosine (dC:Ag+:dC) base pair as a chemical trigger for self-assembly is described. It is demonstrated that Ag+-functionalized DNA can undergo programmable assembly into large arrays and rings, and can be further coassembled with guanine tetraplexes (G4). It is shown that 2D DNA lattices can be assembled with a variety of embedded nanowires at tunable spacing. These results serve as a foundation for further development of self-assembled, metalated DNA nanostructures, with potential for high-precision DNA nanoelectronics with nanometer pitch.
Collapse
Affiliation(s)
- Simon Vecchioni
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Rainbow Lo
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London, W12 0BZ, UK
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Lynn J Rothschild
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
4
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shen S, Fu AY, Jamba M, Li J, Cui Z, Pastor L, Cataldi D, Sun Q, Pathakamuri JA, Kuebler D, Rohall M, Krohn M, Kissinger D, Neves J, Archibeque I, Zhang A, Lu CM, Sha MY. Rapid detection of SARS-CoV-2 variants by molecular-clamping technology-based RT-qPCR. Microbiol Spectr 2024; 12:e0424823. [PMID: 39412285 PMCID: PMC11537085 DOI: 10.1128/spectrum.04248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/30/2024] [Indexed: 11/07/2024] Open
Abstract
Given the challenges that SARS-CoV-2 variants have caused in terms of rapid spread and reduced vaccine efficacy, a rapid and cost-effective assay that can detect new and emerging variants is greatly needed worldwide. We have successfully applied the xenonucleic acid-based molecular-clamping technology to develop a multiplex reverse-transcription quantitative real-time PCR assay for SARS-CoV-2 multivariant detection. The assay was used to test 649 nasopharyngeal swab samples that were collected for clinical diagnosis or surveillance. The assay was able to correctly identify all 36 Delta variant samples as it accurately detected the D614G, T478K, and L452R mutations. In addition, the assay was able to correctly identify all 34 Omicron samples by detecting the K417N, T478K, N501Y, and D614G mutations. This technique reliably detects a variety of variants and has an analytical sensitivity of 100 copies/mL. In conclusion, this novel assay can serve as a rapid and cost-effective tool to facilitate large-scale detection of SARS-CoV-2 variants. IMPORTANCE We have developed a multiplex reverse-transcription quantitative real-time PCR (RT-qPCR) testing platform for the rapid detection of SARS-CoV-2 variants using the xenonucleic acid (XNA)-based molecular-clamping technology. The XNA-based RT-qPCR assay can achieve high sensitivity with a limit of detection of about 100 copies/mL for variant detection which is much better than the next-generation sequencing (NGS) assay. Its turnaround time is about 4 hours with lower cost and a lot of Clinical Laboratory Improvement Amendments (CLIA) labs own the instrument and meet skillset requirements. This assay provides a rapid, reliable, and cost-effective testing platform for rapid detection and monitoring of known and emerging SARS-CoV-2 variants. This testing platform can be adopted by laboratories that perform routine SARS-CoV-2 PCR testing, providing a rapid and cost-effective method in lieu of NGS-based assays, for detecting, differentiating, and monitoring SARS-CoV-2 variants. This assay is easily scalable to any new variant(s) should it emerge.
Collapse
Affiliation(s)
- Shuo Shen
- DiaCarta Inc., Pleasanton, California, USA
| | | | | | | | - Zhen Cui
- DiaCarta Inc., Pleasanton, California, USA
| | | | | | - Qing Sun
- DiaCarta Inc., Pleasanton, California, USA
| | | | - Daniel Kuebler
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | - Michael Rohall
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | - Madison Krohn
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | | | - Jocelyn Neves
- Franciscan University of Steubenville, Steubenville, Ohio, USA
| | | | | | - Chuanyi M. Lu
- Department of Laboratory Medicine, University of California San Francisco and San Francisco VA Health Care System, San Francisco, California, USA
| | | |
Collapse
|
6
|
Sun L, Xiang Y, Du Y, Wang Y, Ma J, Wang Y, Wang X, Wang G, Chen T. Template-independent synthesis and 3'-end labelling of 2'-modified oligonucleotides with terminal deoxynucleotidyl transferases. Nucleic Acids Res 2024; 52:10085-10101. [PMID: 39149896 PMCID: PMC11417362 DOI: 10.1093/nar/gkae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuming Xiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yangming Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yaxin Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Xueting Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
7
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
8
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
9
|
Singh D. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Protein Pept Lett 2024; 31:586-601. [PMID: 39177133 DOI: 10.2174/0109298665310091240809103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
This review explores the burgeoning field of macromolecular polymer-based complexes, highlighting their revolutionary potential for the delivery of nucleotides for therapeutic applications. These complexes, ingeniously crafted from a variety of polymers, offer a unique solution to the challenges of nucleotide delivery, including protection from degradation, targeted delivery, and controlled release. The focus of this report is primarily on the design principles, encapsulation strategies, and biological interactions of these complexes, with an emphasis on their biocompatibility, biodegradability, and ability to form diverse structures, such as nanoparticles and micelles. Significant attention is paid to the latest advancements in polymer science that enable the precise tailoring of these complexes for specific nucleotides, such as DNA, RNA, and siRNA. The review discusses the critical role of surface modifications and the incorporation of targeting ligands in enhancing cellular uptake and ensuring delivery to specific tissues or cells, thereby reducing off-target effects and improving therapeutic efficacy. Clinical applications of these polymer-based delivery systems are thoroughly examined with a focus on their use in treating genetic disorders, cancer, and infectious diseases. The review also addresses the challenges and limitations currently faced in this field, such as scalability, manufacturing complexities, and regulatory hurdles. Overall, this review provides a comprehensive overview of the current state and future prospects of macromolecular polymer-based complexes in nucleotide delivery. It underscores the significance of these systems in advancing the field of targeted therapeutics and their potential to reshape the landscape of medical treatment for a wide range of diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
10
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
11
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
12
|
Neitz H, Bessi I, Kachler V, Michel M, Höbartner C. Tailored Tolane-Perfluorotolane Assembly as Supramolecular Base Pair Replacement in DNA. Angew Chem Int Ed Engl 2023; 62:e202214456. [PMID: 36344446 PMCID: PMC10107946 DOI: 10.1002/anie.202214456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Irene Bessi
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Valentin Kachler
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Manuela Michel
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)University of WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
13
|
Ivanov GS, Tribulovich VG, Pestov NB, David TI, Amoah AS, Korneenko TV, Barlev NA. Artificial genetic polymers against human pathologies. Biol Direct 2022; 17:39. [PMID: 36474260 PMCID: PMC9727881 DOI: 10.1186/s13062-022-00353-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Originally discovered by Nielsen in 1991, peptide nucleic acids and other artificial genetic polymers have gained a lot of interest from the scientific community. Due to their unique biophysical features these artificial hybrid polymers are now being employed in various areas of theranostics (therapy and diagnostics). The current review provides an overview of their structure, principles of rational design, and biophysical features as well as highlights the areas of their successful implementation in biology and biomedicine. Finally, the review discusses the areas of improvement that would allow their use as a new class of therapeutics in the future.
Collapse
Affiliation(s)
- Gleb S Ivanov
- Institute of Cytology, Tikhoretsky Ave 4, Saint Petersburg, Russia, 194064
- St. Petersburg State Technological Institute (Technical University), Saint Petersburg, Russia, 190013
| | - Vyacheslav G Tribulovich
- St. Petersburg State Technological Institute (Technical University), Saint Petersburg, Russia, 190013
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, Russia, 108819
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, 117997
- Institute of Biomedical Chemistry, Moscow, Russia, 119121б
| | - Temitope I David
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
| | - Abdul-Saleem Amoah
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 141701
| | - Tatyana V Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, 117997
| | - Nikolai A Barlev
- Institute of Cytology, Tikhoretsky Ave 4, Saint Petersburg, Russia, 194064.
- Institute of Biomedical Chemistry, Moscow, Russia, 119121б.
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan.
| |
Collapse
|
14
|
Woloszyn K, Vecchioni S, Ohayon YP, Lu B, Ma Y, Huang Q, Zhu E, Chernovolenko D, Markus T, Jonoska N, Mao C, Seeman NC, Sha R. Augmented DNA Nanoarchitectures: A Structural Library of 3D Self-Assembling Tensegrity Triangle Variants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206876. [PMID: 36100349 DOI: 10.1002/adma.202206876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The DNA tensegrity triangle is known to reliably self-assemble into a 3D rhombohedral crystalline lattice via sticky-end cohesion. Here, the library of accessible motifs is expanded through covalent extensions of intertriangle regions and sticky-end-coordinated linkages of adjacent triangles with double helical segments using both geometrically symmetric and asymmetric configurations. The molecular structures of 18 self-assembled architectures at resolutions of 3.32-9.32 Å are reported; the observed cell dimensions, cavity sizes, and cross-sectional areas agree with theoretical expectations. These data demonstrate that fine control over triclinic and rhombohedral crystal parameters and the customizability of more complex 3D DNA lattices are attainable via rational design. It is anticipated that augmented DNA architectures may be fine-tuned for the self-assembly of designer nanocages, guest-host complexes, and proscriptive 3D nanomaterials, as originally envisioned. Finally, designer asymmetric crystalline building blocks can be seen as a first step toward controlling and encoding information in three dimensions.
Collapse
Affiliation(s)
- Karol Woloszyn
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Simon Vecchioni
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yoel P Ohayon
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Brandon Lu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yinglun Ma
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Eric Zhu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | | | - Tiffany Markus
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Nataša Jonoska
- Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
15
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
16
|
Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022; 3:1173-1197. [PMID: 36320892 PMCID: PMC9533422 DOI: 10.1039/d2cb00116k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Xingyun Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Binliang Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yanjia Qin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| |
Collapse
|
17
|
Silwal AP, Thennakoon SKS, Arya SP, Postema RM, Jahan R, Phuoc CMT, Tan X. DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach. Theranostics 2022; 12:5522-5536. [PMID: 35910791 PMCID: PMC9330529 DOI: 10.7150/thno.74428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Objective: Nobody knows when the COVID-19 pandemic will end or when and where the next coronavirus will outbreak. Therefore, it is still necessary to develop SARS-CoV-2 inhibitors for different variants or even the new coronavirus. Since SARS-CoV-2 uses its surface spike-protein to recognize hACE2, mediating its entry into cells, ligands that can specifically recognize the spike-protein have the potential to prevent infection. Methods: We have recently discovered DNA aptamers against the S2-domain of the WT spike-protein by exploiting the selection process called SELEX. After optimization, among all candidates, the aptamer S2A2C1 has the shortest sequence and the best binding affinity toward the S2-protein. More importantly, the S2A2C1 aptamer does not bind to the RBD of the spike-protein, but it efficiently blocks the spike-protein/hACE2 interaction, suggesting an RBD-independent inhibition approach. To further improve its performance, we conjugated the S2A2C1 aptamer with a reported anti-RBD aptamer, S1B6C3, using various linkers and constructed hetero-bivalent fusion aptamers. Binding affinities of mono and fusion aptamers against the spike-proteins were measured. The inhibition efficacies of mono and fusion aptamers to prevent the hACE2/spike-protein interaction were determined using ELISA. Results: Anti-spike-protein aptamers, including S2A2C1 and S1B6C3-A5-S2A2C1, maintained high binding affinity toward the WT, Delta, and Omicron spike-proteins and high inhibition efficacies to prevent them from binding to hACE2, rendering them well-suited as diagnostic and therapeutic molecular tools to target SARS-CoV-2 and its variants. Conclusions: Overall, we discovered the anti-S2 aptamer, S2A2C1, which inhibits the hACE2/spike-protein interaction via an RBD-independent approach. The anti-S2 and anti-RBD aptamers were conjugated to obtain the fusion aptamer, S1B6C3-A5-S2A2C1, which recognizes the spike-protein by an RBD-dependent approach. Our strategies, which discovered aptamer inhibitors targeting the highly conserved S2-protein, as well as the design of fusion aptamers, can be used to target new coronaviruses as they emerge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
18
|
Wu KB, Skrodzki CJA, Su Q, Lin J, Niu J. "Click handle"-modified 2'-deoxy-2'-fluoroarabino nucleic acid as a synthetic genetic polymer capable of post-polymerization functionalization. Chem Sci 2022; 13:6873-6881. [PMID: 35774169 PMCID: PMC9200136 DOI: 10.1039/d2sc00679k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
The functions of natural nucleic acids such as DNA and RNA have transcended genetic information carriers and now encompass affinity reagents, molecular catalysts, nanostructures, data storage, and many others. However, the vulnerability of natural nucleic acids to nuclease degradation and the lack of chemical functionality have imposed a significant constraint on their ever-expanding applications. Herein, we report the synthesis and polymerase recognition of a 5-(octa-1,7-diynyl)uracil 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) triphosphate. The DNA-templated, polymerase-mediated primer extension using this "click handle"-modified FANA (cmFANA) triphosphate and other FANA nucleotide triphosphates consisting of canonical nucleobases efficiently generated full-length products. The resulting cmFANA polymers exhibited excellent nuclease resistance and the ability to undergo efficient click conjugation with azide-functionalized molecules, thereby becoming a promising platform for serving as a programmable and evolvable synthetic genetic polymer capable of post-polymerization functionalization.
Collapse
Affiliation(s)
- Kevin B Wu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | | | - Qiwen Su
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jennifer Lin
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jia Niu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| |
Collapse
|
19
|
Hu L, Takezawa Y, Shionoya M. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides. Chem Sci 2022; 13:3977-3983. [PMID: 35440985 PMCID: PMC8985573 DOI: 10.1039/d2sc00926a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Metal-mediated DNA base pairs, which consist of two ligand-type artificial nucleobases and a bridging metal ion, have attracted increasing attention in recent years as a different base pairing mode from natural base pairing. Metal-mediated base pairing has been extensively studied, not only for metal-dependent thermal stabilisation of duplexes, but also for metal assembly by DNA templates and construction of functional DNAs that can be controlled by metals. Here, we report the metal-mediated base paring properties of a novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase and a previously reported 2-oxo-imidazole-4-carboxamide (ImOA) nucleobase, both of which can be easily derived from a commercially available uridine analogue. The ImOC nucleobases were found to form stable ImOC–CuII–ImOC and ImOC–HgII–ImOC base pairs in the presence of the corresponding metal ions, leading to an increase in the duplex melting temperature by +20 °C and +11 °C, respectively. The ImOC bases did not react with other divalent metal ions and showed superior metal selectivity compared to similar nucleobase design reported so far. The ImOC–CuII–ImOC base pair was much more stable than mismatch pairs with other natural nucleobases, confirming the base pair specificity in the presence of CuII. Furthermore, we demonstrated the quantitative assembly of three CuII ions inside a DNA duplex with three consecutive ImOC–ImOC pairs, showing great potential of DNA-template based CuII nanoarray construction. The study of easily-prepared ImOC base pairs will provide a new design strategy for metal-responsive DNA materials. A novel 2-oxo-imidazole-4-carboxylate (ImOC) nucleobase, which can be easily derived from a commercially available uridine analogue, was found to form stable CuII- and HgII-mediated base pairs in DNA duplexes.![]()
Collapse
Affiliation(s)
- Lingyun Hu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
20
|
Morcinek-Orłowska J, Zdrojewska K, Węgrzyn A. Bacteriophage-Encoded DNA Polymerases-Beyond the Traditional View of Polymerase Activities. Int J Mol Sci 2022; 23:635. [PMID: 35054821 PMCID: PMC8775771 DOI: 10.3390/ijms23020635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA polymerases are enzymes capable of synthesizing DNA. They are involved in replication of genomes of all cellular organisms as well as in processes of DNA repair and genetic recombination. However, DNA polymerases can also be encoded by viruses, including bacteriophages, and such enzymes are involved in viral DNA replication. DNA synthesizing enzymes are grouped in several families according to their structures and functions. Nevertheless, there are examples of bacteriophage-encoded DNA polymerases which are significantly different from other known enzymes capable of catalyzing synthesis of DNA. These differences are both structural and functional, indicating a huge biodiversity of bacteriophages and specific properties of their enzymes which had to evolve under certain conditions, selecting unusual properties of the enzymes which are nonetheless crucial for survival of these viruses, propagating as special kinds of obligatory parasites. In this review, we present a brief overview on DNA polymerases, and then we discuss unusual properties of different bacteriophage-encoded enzymes, such as those able to initiate DNA synthesis using the protein-priming mechanisms or even start this process without any primer, as well as able to incorporate untypical nucleotides. Apart from being extremely interesting examples of biochemical biodiversity, bacteriophage-encoded DNA polymerases can also be useful tools in genetic engineering and biotechnology.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
21
|
Leguizamon SC, Scott TF. Mimicking DNA Functions with Abiotic, Sequence-Defined Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samuel C. Leguizamon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy F. Scott
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
22
|
Enhanced Photothermal and Photoacoustic Performance of Graphene Oxide in NIR-II Biowindow by Chemical Reduction. PHOTONICS 2021. [DOI: 10.3390/photonics9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on a novel strategy for constructing graphene oxide nanomaterials with strongly enhanced photothermal (PT) and photoacoustic (PA) performance in the near-infrared (NIR)-II biowindow by chemical reduction. Optical spectra clearly reveal that obvious enhancement of optical absorption is observed in the whole NIR wideband from the NIR-I to NIR-II region for chemically reduced graphene oxide (CR-G) nanomaterials, which is mainly arising from the restoration of the electronic conjugation within the graphene oxide sheets and therefore inducing a black-body re-introduction effect of typical graphite-like materials. We experimentally synthesized CR-G samples with different degrees of reduction to demonstrate the efficiency of the proposed strategy. Experimental results show that the PT performance of the CR-G samples is greatly improved owing to the absorption enhancement by chemical reduction in the NIR-II biowindow. Furthermore, both in vitro and in vivo PA imaging of the CR-G samples with different degrees of reduction are performed to demonstrate their enhanced NIR-II PA performances. This work provides a feasible guidance for the rational design of graphene oxide nanomaterials with great potential for PT and PA applications in the NIR-II biowindow by chemical reduction.
Collapse
|
23
|
De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021; 50:13410-13440. [PMID: 34792047 PMCID: PMC8628606 DOI: 10.1039/d1cs00632k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/26/2022]
Abstract
The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.
Collapse
Affiliation(s)
- Angela F De Fazio
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Doxi Misatziou
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ysobel R Baker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
24
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
25
|
Alamudi SH, Kimoto M, Hirao I. Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem 2021; 12:1640-1649. [PMID: 34778766 PMCID: PMC8528270 DOI: 10.1039/d1md00199j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid aptamers, also regarded as chemical antibodies, show potential as targeted therapeutic and delivery agents since they possess unique advantages over antibodies. Generated by an iterative selection and amplification process from oligonucleotide libraries using cultured cells, the aptamers bind to their target molecules expressed on the cell surface. Excitingly, most aptamers also demonstrate a cell-internalizing property in native living cells, allowing them to directly enter the cells via endocytosis depending on the target. In this review, we discuss selection methods in generating cell-internalizing aptamers via a cell-based selection process, along with their challenges and optimization strategies. We highlight the cellular uptake routes adopted by the aptamers and also their intracellular fate after the uptake, to give an overview of their mechanism of action for applications as promising pharmacological agents.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| | - Michiko Kimoto
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| | - Ichiro Hirao
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (ASTAR) 31 Biopolis Way, Nanos #07-01 Singapore 138669 Singapore
| |
Collapse
|
26
|
Beck KM, Sharma PK, Hornum M, Risgaard NA, Nielsen P. Double-headed nucleic acids condense the molecular information of DNA to half the number of nucleotides. Chem Commun (Camb) 2021; 57:9128-9131. [PMID: 34498649 DOI: 10.1039/d1cc03539h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleotide monomers that hold two nucleobases each, i.e. double-headed nucleotides, have been shown to form two sets of functional Watson-Crick base pairs when incorporated into dsDNA, and they hereby behave as dinucleotides. To form the basis for fully modified double-headed nucleic acids (DhNA), we have prepared three new DhNA monomers and can now demonstrate that the molecular information of 10 Watson-Crick base pairs can be condensed to highly stable 5-mer DhNA duplexes.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Mick Hornum
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Nikolaj A Risgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense DK-5230, Denmark.
| |
Collapse
|
27
|
Song P, Zhang R, He C, Chen T. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases. Curr Protoc 2021; 1:e188. [PMID: 34232574 DOI: 10.1002/cpz1.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Backbone-modified nucleic acids are usually more stable enzymatically than their natural counterparts, enabling their broad application as potential diagnostic or therapeutic agents. Moreover, the development of nucleic acids with unnatural backbones has expanded the pool of genetic information carriers and paved the way toward synthetic xenobiology. However, synthesizing these molecules remains very challenging due to the requirement for harsh reaction conditions and the low coupling efficiency during their traditional solid-phase synthesis. Although enzymatic synthesis provides an attractive alternative that also allows the replication and artificial evolution of these molecules, it is crucially dependent on the availability of polymerases capable of synthesizing these backbone-modified nucleotides. Previously, a series of thermostable polymerases that can efficiently synthesize or even amplify backbone-modified DNA or RNA have been evolved through a polymerase evolution method based on phage display. Herein we summarize protocols to use these evolved polymerase mutants to transcribe, reverse transcribe, and PCR amplify backbone-modified nucleic acids. We also outline the polymerase chain transcription method, developed later for the rapid production of RNA or backbone-modified RNA with one of these evolved polymerases, SFM4-3. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Transcription/synthesis of modified DNA/RNA from DNA templates with evolved polymerases SFM4-3 or SFM4-6 Basic Protocol 2: Reverse transcription of modified DNA/RNA with evolved polymerase SFM4-9 Basic Protocol 3: PCR amplification of modified DNA with evolved polymerase SFM4-3 Basic Protocol 4: Polymerase chain transcription for the production of RNA/modified RNA oligonucleotides with evolved polymerase SFM4-3.
Collapse
Affiliation(s)
- Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Rujie Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
28
|
Freage L, Boykoff N, Mallikaratchy P. Utility of Multivalent Aptamers to Develop Nanoscale DNA Devices against Surface Receptors. ACS OMEGA 2021; 6:12382-12391. [PMID: 34056390 PMCID: PMC8154169 DOI: 10.1021/acsomega.1c01513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
DNA nanotechnology is undergoing rapid progress in the assembly of functional devices with biological relevance. In particular, currently, the research attention is more focused on the application of nanodevices at the interface of chemistry and biology, on the cell membrane where protein receptors communicate with the extracellular environment. This review explores the use of multivalent nucleic acid ligands termed aptamers in the design of DNA-based nanodevices to probe cellular interactions followed by a perspective on the untapped utility of XNA and UBP nanotechnology in designing functional nanomaterials with broader structural space.
Collapse
Affiliation(s)
- Lina Freage
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford Park Boulevard, Bronx, New York 10468, United
States
| | - Natalie Boykoff
- Ph.D.
Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Prabodhika Mallikaratchy
- Department
of Chemistry, Lehman College, The City University
of New York, 250 Bedford Park Boulevard, Bronx, New York 10468, United
States
- Ph.D.
Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D.
Program in Molecular, Cellular and Developmental Biology, The Graduate Center of the City University of New
York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
29
|
Beck KM, Ruder L, Nicolai TS, Pham RL, Risgaard NA, Hornum M, Nielsen P. Double‐Headed Nucleotides with Non‐Native Nucleobases: Synthesis and Duplex Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Linette Ruder
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Tine S. Nicolai
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Nikolaj A. Risgaard
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Mick Hornum
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
30
|
Yang C, Wu KB, Deng Y, Yuan J, Niu J. Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Lett 2021; 10:243-257. [PMID: 34336395 PMCID: PMC8320758 DOI: 10.1021/acsmacrolett.0c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequence-controlled polymers are an emerging class of synthetic polymers with a regulated sequence of monomers. In the past decade, tremendous progress has been made in the synthesis of polymers with the sophisticated sequence control approaching the level manifested in biopolymers. In contrast, the exploration of novel functions that can be achieved by controlling synthetic polymer sequences represents an emerging focus in polymer science. This Viewpoint will survey recent advances in the functional applications of sequence-controlled polymers and provide a perspective on the challenges and outlook for pursuing future applications of this fascinating class of macromolecules.
Collapse
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kevin B. Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yu Deng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingsong Yuan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
31
|
Göpfrich K, Ohmann A, Keyser UF. Design and Assembly of Membrane-Spanning DNA Nanopores. Methods Mol Biol 2021; 2186:33-48. [PMID: 32918728 DOI: 10.1007/978-1-0716-0806-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Versatile lipid membrane-inserting nanopores have been made by functionalizing DNA nanostructures with hydrophobic tags. Here, we outline design and considerations to obtain DNA nanopores with the desired dimensions and conductance properties. We further provide guidance on their reconstitution into lipid membranes.
Collapse
Affiliation(s)
| | | | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
33
|
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020; 10:551. [PMID: 33269185 PMCID: PMC7686427 DOI: 10.1007/s13205-020-02546-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The innovative discovery of aptamers was based on target-specific treatment in clinical diagnostics and therapeutics. Aptamers are synthetic, single-stranded oligonucleotides, simply described as chemical antibodies, which can bind to diverse targets with high specificity and affinity. Aptamers are synthesized by the SELEX technique, and possess distinctive properties as small size (10-50 kDa), higher stability, easy manufacture and less immunogenicity. These oligonucleotides are easily degraded by nucleases, so require some important modifications like capping and incorporation of modified nucleotides. RNA aptamers can be modified chemically on 2' positions using -NH3, -F, -deoxy, or -OMe groups to enhance their nuclease resistance. Aptamers have been employed for multiple purposes, as direct drugs or aptamer-drug conjugates targeted against different diseased cells. Different aptamer-conjugated nanovehicles (e.g., micelles, liposomes, silica nano-shells) have been designed to transport diverse anticancer-drugs like doxorubicin and cisplatin in bulk to minimize systemic cytotoxicity. Some drug-loaded nanovehicles (up to 97% loading capacity) and conjugated with specific aptamer resulted in more than 60% tumor inhibition as compared to unconjugated drug-loaded nanovehicles which showed only 31% cancer inhibition. In addition, aptamers have been widely used in basic research, food safety, environmental monitoring, clinical diagnostics and therapeutics. Different FDA-approved RNA and DNA aptamers are now available in the market, used for the treatment of diverse diseases, especially cancer. These aptamers include Macugen, Pegaptanib, etc. Despite a good progress in aptamer use, the present-day chemotherapeutics and drug targeting systems still face great challenges. Here in this review article, we are discussing nucleic acid aptamers, preparation, role in the transportation of different nanoparticle vehicles and their applications as therapeutic agents.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, P.O. Box 6699, Buraydah, 51452 Saudi Arabia
| |
Collapse
|
34
|
Chandrasekaran AR, Mathivanan J, Ebrahimi P, Vilcapoma J, Chen AA, Halvorsen K, Sheng J. Hybrid DNA/RNA nanostructures with 2'-5' linkages. NANOSCALE 2020; 12:21583-21590. [PMID: 33089274 PMCID: PMC7644649 DOI: 10.1039/d0nr05846g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Nucleic acid nanostructures with different chemical compositions have shown utility in biological applications as they provide additional assembly parameters and enhanced stability. The naturally occurring 2'-5' linkage in RNA is thought to be a prebiotic analogue and has potential use in antisense therapeutics. Here, we report the first instance of DNA/RNA motifs containing 2'-5' linkages. We synthesized and incorporated RNA strands with 2'-5' linkages into different DNA motifs with varying number of branch points (a duplex, four arm junction, double crossover motif and tensegrity triangle motif). Using experimental characterization and molecular dynamics simulations, we show that hybrid DNA/RNA nanostructures can accommodate interspersed 2'-5' linkages with relatively minor effect on the formation of these structures. Further, the modified nanostructures showed improved resistance to ribonuclease cleavage, indicating their potential use in the construction of robust drug delivery vehicles with prolonged stability in physiological conditions.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| | - Johnsi Mathivanan
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Parisa Ebrahimi
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Alan A. Chen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Jia Sheng
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222
- To whom correspondence should be addressed: (ARC), (JS)
| |
Collapse
|
35
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
36
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
37
|
Lapa SA, Guseinov TO, Pavlov AS, Shershov VE, Kuznetsova VE, Zasedatelev AS, Chudinov AV. A Simultaneous Use of Cy5-Modified Derivatives of Deoxyuridine and Deoxycytidine in PCR. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Sutherland BP, LeValley PJ, Bischoff DJ, Kloxin AM, Kloxin CJ. Sequence-defined vinyl sulfonamide click nucleic acids (VS-CNAs) and their assembly into dynamically responsive materials. Chem Commun (Camb) 2020; 56:11263-11266. [PMID: 32820777 PMCID: PMC7530108 DOI: 10.1039/d0cc04235h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic DNA analogues are of great interest for their application in information storage, therapeutics, and nanostructured materials, yet are often limited in scalability. Vinyl sulfonamide click nucleic acids (VS-CNAs) have been developed to overcome this limitation using the highly efficient thiol-Michael 'click' reaction. Utilizing all four nucleobases, sequence-defined click nucleic acids (CNAs) were synthesized using a simple and scalabale solution-phase approach. Employing a polyethylene glycol (PEG) support, synthesis of the CNA sequence, GATTACA, was achieved in high yields. CNA crosslinked hydrogels were assembled using multiarm PEG-CNAs resulting in materials that dynamically respond to temperature, strain, and competitive sequences.
Collapse
Affiliation(s)
- Bryan P Sutherland
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Paige J LeValley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA. and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA. and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
39
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
40
|
Lambert BP, Gillen AJ, Boghossian AA. Synthetic Biology: A Solution for Tackling Nanomaterial Challenges. J Phys Chem Lett 2020; 11:4791-4802. [PMID: 32441940 DOI: 10.1021/acs.jpclett.0c00929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bioengineers have mastered practical techniques for tuning a biomaterial's properties with only limited information on the relationship between the material's structure and function. These techniques have been quintessential to engineering proteins, which are most often riddled with ill-defined structure-function relationships. In this Perspective, we review bioengineering approaches aimed at overcoming the elusive protein structure-function relation. We extend these principles to engineering synthetic nanomaterials, specifically applying the underlying theory to optical sensors based on single-stranded DNA-wrapped single-walled carbon nanotubes (ssDNA-SWCNTs). Bioengineering techniques such as directed evolution, computational design, and noncanonical synthesis are reviewed in the broader context of nanomaterials engineering. We further provide an order-of-magnitude analysis of empirical approaches that rely on random or guided searches for designing new nanomaterials. The underlying concepts presented in these approaches can be further extended to a broad range of engineering fields confronted with empirical design strategies, including catalysis, metal-organic frameworks (MOFs), pharmaceutical dosing, and optimization algorithms.
Collapse
Affiliation(s)
- Benjamin P Lambert
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alice J Gillen
- École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | |
Collapse
|
41
|
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Gyurin Kim
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea; DWI-Leibniz Institute for Interactive Materials, Aachen 52056, Germany.
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
42
|
Sharpe DJ, Röder K, Wales DJ. Energy Landscapes of Deoxyxylo- and Xylo-Nucleic Acid Octamers. J Phys Chem B 2020; 124:4062-4068. [PMID: 32336100 PMCID: PMC7304908 DOI: 10.1021/acs.jpcb.0c01420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Artificial
analogues of the natural nucleic acids have attracted
interest as a diverse class of information storage molecules capable
of self-replication. In this study, we use the computational potential
energy landscape framework to investigate the structural and dynamical
properties of xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA),
which are derived from their respective RNA and DNA analogues by inversion
of a single chiral center in the sugar moiety of the nucleotides.
For an octameric XyNA sequence and the analogue dXyNA, we observe
facile conformational transitions between a left-handed helix, which
is the free energy global minimum, and a ladder-type structure with
approximately zero helicity. The competing ensembles are better separated
in the dXyNA, making it a more suitable candidate for a molecular
switch, whereas the XyNA exhibits additional flexibility. Both energy
landscapes exhibit greater frustration than we observe in RNA or DNA,
in agreement with the higher degree of optimization expected from
the principle of minimal frustration in evolved biomolecules.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Konstantin Röder
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
43
|
Xu X, Winterwerber P, Ng D, Wu Y. DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Top Curr Chem (Cham) 2020; 378:31. [PMID: 32146596 PMCID: PMC7060966 DOI: 10.1007/s41061-020-0292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
DNA nanotechnology, based on sequence-specific DNA recognition, could allow programmed self-assembly of sophisticated nanostructures with molecular precision. Extension of this technique to the preparation of broader types of nanomaterials would significantly improve nanofabrication technique to lower nanometer scale and even achieve single molecule operation. Using such exquisite DNA nanostructures as templates, chemical synthesis of polymer and inorganic nanomaterials could also be programmed with unprecedented accuracy and flexibility. This review summarizes recent advances in the synthesis and assembly of polymer and inorganic nanomaterials using DNA nanostructures as templates, and discusses the current challenges and future outlook of DNA templated nanotechnology.
Collapse
Affiliation(s)
- Xuemei Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China
| | - Pia Winterwerber
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - David Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan, 430074, People's Republic of China.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
44
|
Piotrowicz M, Kowalczyk A, Trzybiński D, Woźniak K, Kowalski K. Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michał Piotrowicz
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Aleksandra Kowalczyk
- Faculty of Biology and Environmental Protection, Department of Microbial Genetics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Konrad Kowalski
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
45
|
Lackey HH, Chen Z, Harris JM, Peterson EM, Heemstra JM. Single-Molecule Kinetics Show DNA Pyrimidine Content Strongly Affects RNA:DNA and TNA:DNA Heteroduplex Dissociation Rates. ACS Synth Biol 2020; 9:249-253. [PMID: 31909980 DOI: 10.1021/acssynbio.9b00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heteroduplex hybridization thermodynamics of DNA with either RNA or TNA are greatly affected by DNA pyrimidine content, where increased DNA pyrimidine content leads to significantly increased duplex stability. Little is known, however, about the effect that purine or pyrimidine content has on the hybridization kinetics of these duplexes. In this work, single-molecule imaging is used to measure the hybridization kinetics of oligonucleotides having varying DNA pyrimidine content with complementary DNA, RNA, and TNA sequences. Results suggest that the change in duplex stability from DNA pyrimidine content (corresponding to purine content in the complementary TNA or RNA) is primarily due to changes in the dissociation rate, and not single-strand ordering or other structural changes that increase the association rate. Decreases in heteroduplex hybridization rates with pyrimidine content are similar for RNA and TNA, indicating that TNA behaves as a kinetic analogue for RNA.
Collapse
Affiliation(s)
- Hershel H. Lackey
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhe Chen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric M. Peterson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
Fairbanks BD, Culver HR, Mavila S, Bowman CN. Towards High-Efficiency Synthesis of Xenonucleic Acids. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Abstract
The chemical or prebiotic evolution referred also to as pre-Darwinian evolution describes chemical reactions up to the origin of a self-replicating system that was capable of Darwinian evolution. These chemical processes took place on Earth between about 3.7 and 4.5 billion years ago when cellular life came into being. The pre-Darwinian chemical evolution usually assumes hereditary elements, but does not regard them as self-organizing processes. Physical and chemical self-organization led to uninterrupted pre-Darwinian and Darwinian evolution. Thus, it is not justified to distinguish between different types of evolution. From the many possible solutions, evolution selected among those reactions that generated catalytic networks incorporating chemical sequence information and under gradually changing circumstances produced a reproducible and stable living system that adapted to these conditions. Major issues in this review involve prebiotic reactions leading to genetic evolution involving (1) abiotic sources of components of ribonucleotides and xenobiotic nucleotides, (2) formation of prebiotic RNA, (3) development of genetic RNA from random-sequence noncoding RNA, (4) transition from RNA World to DNA Empire, (5) the role of oxygenic photosynthesis in genetic transitions, and (6) hierarchical arrangement of processes involved in the optimized genetic system.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
48
|
DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:331-370. [PMID: 31713205 DOI: 10.1007/978-981-13-9791-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has revolutionised the capabilities to shape and control three-dimensional structures at the nanometre scale. Designer sensors, nanopores and ion-channels built from DNA have great potential for both cross-disciplinary research and applications. Here, we introduce the concept of structural DNA nanotechnology, including DNA origami, and give an overview of the work flow from design to assembly, characterisation and application of DNA-based functional systems. Chemical functionalisation of DNA has opened up pathways to transform static DNA structures into dynamic nanomechanical sensors. We further introduce nanopore sensing as a powerful label-free single-molecule technique and discuss how it can benefit from DNA nanotechnology. Especially exciting is the possibility to create membrane-inserted DNA nanochannels that mimic their protein-based natural counterparts in form and function. In this chapter we review the status quo of DNA sensors, nanopores and ion channels, highlighting opportunities and challenges for their future development.
Collapse
|
49
|
Coantic-Castex S, Martinez A, Harakat D, Guillaume D, Clivio P. The remarkable UV light invulnerability of thymine GNA dinucleotides. Chem Commun (Camb) 2019; 55:12571-12574. [PMID: 31577282 DOI: 10.1039/c9cc04355a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We herein demonstrate the UV resistance of glycol nucleic acid (GNA) dinucleotides. This resistance sustains the hypothesis of GNA as a nucleic acid prebiotic ancestor on early Earth, a time of intense solar UV light. Such photorobustness, due to the absence of intrastrand base stacking, could offer an opportunity for nanodevice development requiring challenging UV conditions.
Collapse
Affiliation(s)
- Stéphanie Coantic-Castex
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France.
| | - Agathe Martinez
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Bâtiment 18, Europol'Agro, BP 1039, F-51687 Reims Cedex 2, France
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Bâtiment 18, Europol'Agro, BP 1039, F-51687 Reims Cedex 2, France
| | - Dominique Guillaume
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France.
| | - Pascale Clivio
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR de Pharmacie, 51 rue Cognacq-Jay, F-51096 Reims Cedex, France.
| |
Collapse
|
50
|
Renders M, Dumbre S, Abramov M, Kestemont D, Margamuljana L, Largy E, Cozens C, Vandenameele J, Pinheiro VB, Toye D, Frère JM, Herdewijn P. Kinetic analysis of N-alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases. Nucleic Acids Res 2019; 47:2160-2168. [PMID: 30698800 PMCID: PMC6412122 DOI: 10.1093/nar/gkz008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Six 1′,5′-anhydrohexitol uridine triphosphates were synthesized with aromatic substitutions appended via a carboxamide linker to the 5-position of their bases. An improved method for obtaining such 5-substituted hexitol nucleosides and nucleotides is described. The incorporation profile of the nucleotide analogues into a DNA duplex overhang using recently evolved XNA polymerases is compared. Long, mixed HNA sequences featuring the base modifications are generated. The apparent binding affinity of four of the nucleotides to the enzyme, the rate of the chemical step and of product release, plus the specificity constant for the incorporation of these modified nucleotides into a DNA duplex overhang using the HNA polymerase T6G12_I521L are determined via pre-steady-state kinetics. HNA polymers displaying aromatic functional groups could have significant impact on the isolation of stable and high-affinity binders and catalysts, or on the design of nanomaterials.
Collapse
Affiliation(s)
- Marleen Renders
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium
| | - Shrinivas Dumbre
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium
| | - Mikhail Abramov
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium
| | - Donaat Kestemont
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium
| | - Lia Margamuljana
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium
| | - Eric Largy
- ARNA laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Christopher Cozens
- Structural and Molecular Biology Department, University College London, Gower Street, London WC1E B6T, UK.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding/Robotein Platform, Centre for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Quartier Agora, Allée du six Août 13, Bât. B6a, 4000 Liège, Belgium
| | - Vitor B Pinheiro
- Structural and Molecular Biology Department, University College London, Gower Street, London WC1E B6T, UK.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Dominique Toye
- Chemical engineering laboratory, University of Liège, Allée de la chimie, 3, Bât B6c, 4000 Liège, Belgium
| | - Jean-Marie Frère
- Laboratory of Enzymology and Protein Folding/Robotein Platform, Centre for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Quartier Agora, Allée du six Août 13, Bât. B6a, 4000 Liège, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Rega, Herestraat 49 box 1041, 3000 Leuven, Belgium.,Université d'Evry, CNRS-UMR8030/Laboratoire iSSB, CEA, DRF, IG, Genoscope, Université Paris-Saclay, Evry 91000, France
| |
Collapse
|