1
|
Yoshida Y, Aoki M, Nagase K, Marubashi K, Kojima H, Itakura S, Komatsu S, Sugibayashi K, Todo H. Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode. Pharmaceutics 2024; 16:1219. [PMID: 39339255 PMCID: PMC11435037 DOI: 10.3390/pharmaceutics16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal (i.d.) site (DEP) with implanted electrodes to achieve a high protein expression level was investigated. In addition, DEP application with various intervals with a low application voltage was also evaluated to confirm its effect on protein expression. Methods: Green fluorescent protein (GFP)- and luciferase-encoding DNA were administrated, and GFP and luciferase were evaluated. Results: A higher protein expression level was observed after green fluorescent protein (GFP)- and luciferase-encoding DNA were delivered by i.d. injection followed by DEP application. When luciferase expression was observed with an in vivo imaging system, continuous expression was confirmed over 21 days after i.d. injection followed by DEP at 100 V. This approach provided increased gene expression levels compared with conventional EP methods via the stratum corneum layer. In addition, the effect of application voltage on luciferase expression was investigated; two-time applications (repeated DEP) at 20 V with 5 min intervals showed similar luciferase expression level to single DEP application with 100 V. Histological observations showed the skin became thicker after a single DEP at 100 V, whereas no apparent thickness changes were confirmed after repeated DEP at 20 V with 5 min intervals. Conclusions: This study revealed that direct i.d. voltage application achieved high protein expression levels even at low voltages. Skin is a promising administration site for DNA vaccines, so this approach may be effective for DNA vaccine delivery into skin tissue.
Collapse
Affiliation(s)
- Yuya Yoshida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Manami Aoki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kalin Nagase
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Koichi Marubashi
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Syuuhei Komatsu
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
2
|
Shen Q, Suga S, Moriwaki Y, Du Z, Aizawa E, Okazaki M, Izpisua Belmonte JC, Hirabayashi Y, Suzuki K, Kurita M. Optimization of an adeno-associated viral vector for epidermal keratinocytes in vitro and in vivo. J Dermatol Sci 2024; 115:101-110. [PMID: 39127592 DOI: 10.1016/j.jdermsci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Local gene therapies, including in vivo genome editing, are highly anticipated for the treatment of genetic diseases in skin, especially the epidermis. While the adeno-associated virus (AAV) is a potent vector for in vivo gene delivery, the lack of efficient gene delivery methods has limited its clinical applications. OBJECTIVE To optimize the AAV gene delivery system with higher gene delivery efficiency and specificity for epidermis and keratinocytes (KCs), using AAV capsid and promoter engineering technologies. METHODS AAV variants with mutations in residues reported to be critical to determine the tropism of AAV2 for KCs were generated by site-directed mutagenesis of AAVDJ. The infection efficiency and specificity for KCs of these variants were compared with those of previously reported AAVs considered to be suitable for gene delivery to KCs in vitro and in vivo. Additionally, we generated an epidermis-specific promoter using the most recent short-core promoter and compared its specificity with existing promoters. RESULTS A novel AAVDJ variant capsid termed AAVDJK2 was superior to the existing AAVs in terms of gene transduction efficiency and specificity for epidermis and KCs in vitro and in vivo. A novel tissue-specific promoter, termed the K14 SCP3 promoter, was superior to the existing promoters in terms of gene transduction efficiency and specificity for KCs. CONCLUSION The combination of the AAVDJK2 capsid and K14 SCP3 promoter improves gene delivery to epidermis in vivo and KCs in vitro. The novel AAV system may benefit experimental research and development of new epidermis-targeted gene therapies.
Collapse
Affiliation(s)
- Qi Shen
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuta Moriwaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Zening Du
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Suzuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Japan.
| | - Masakazu Kurita
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
3
|
Zhou B, Liang C, Li P, Xiao H. Revisiting X-linked congenital ichthyosis. Int J Dermatol 2024. [PMID: 39086014 DOI: 10.1111/ijd.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
X-linked recessive ichthyosis (XLI) is a hereditary skin disease characterized by generalized dryness and scaling of the skin, with frequent extracutaneous manifestations. It is the second most common type of ichthyosis, with a prevalence of 1/6,000 to 1/2,000 in males and without any racial or geographical differences. The causative gene for XLI is the steroid sulfatase gene (STS), located on Xp22.3. STS deficiency causes an abnormal cholesterol sulfate (CS) accumulation in the stratum corneum (SC). Excess CS induces epidermal permeability barrier dysfunction and scaling abnormalities. This review summarizes XLI's genetic, clinical, and pathological features, pathogenesis, diagnosis and differential diagnoses, and therapeutic perspectives. Further understanding the role of the STS gene pathogenic variants in XLI may contribute to a more accurate and efficient clinical diagnosis of XLI and provide novel strategies for its treatment and prenatal diagnosis.
Collapse
Affiliation(s)
- Baishun Zhou
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Cancan Liang
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Peiyao Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Heng Xiao
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
4
|
Guri-Lamce I, AlRokh Y, Kim Y, Maeshima R, Graham C, Hart SL, McGrath JA, Jacków-Malinowska J. Topical gene editing therapeutics using lipid nanoparticles: 'gene creams' for genetic skin diseases? Br J Dermatol 2024; 190:617-627. [PMID: 38149939 DOI: 10.1093/bjd/ljad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Patients living with inherited skin diseases have benefited from recent advances in DNA sequencing technologies that provide new or improved diagnostics. However, developing and delivering new treatments for the 'genodermatoses' remains challenging. The goal of creating topical preparations that can recover the inherent gene pathology remains largely aspirational. However, recent progress in two fields - the chemistry of topical delivery formulations (lipid nanoparticles) and the molecular biology of gene repair (CRISPR-Cas9, base and prime editing) - presents new opportunities to address this unmet need. In this review, we discuss how lipid nanoparticle delivery vehicles could be used to deliver gene-editing tools to formulate topical 'gene creams' suitable for the treatment of genodermatoses. We summarize the historical landscape of topical therapeutics and advances in gene editing that may herald an era of new therapies for patients with inherited skin disorders.
Collapse
Affiliation(s)
- Ina Guri-Lamce
- St John's Institute of Dermatology, King's College London, London, UK
| | - Yara AlRokh
- St John's Institute of Dermatology, King's College London, London, UK
| | - Youngah Kim
- St John's Institute of Dermatology, King's College London, London, UK
| | - Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Carina Graham
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Stephen L Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, UCL, London, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | |
Collapse
|
5
|
Gregersen CH, Mearraoui R, Søgaard PP, Clergeaud G, Petersson K, Urquhart AJ, Simonsen JB. Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE. Eur J Pharm Biopharm 2024; 197:114219. [PMID: 38368913 DOI: 10.1016/j.ejpb.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Nucleic acid-based therapeutics encapsulated into lipid nanoparticles (LNPs) can potentially target the root cause of genetic skin diseases. Although nanoparticles are considered impermeable to skin, research and clinical studies have shown that nanoparticles can penetrate into skin with reduced skin barrier function when administered topically. Studies have shown that epidermal keratinocytes express the low-density lipoprotein receptor (LDLR) that mediates endocytosis of apolipoprotein E (apoE)-associated nanoparticles and that dermal fibroblasts express mannose receptors. Here we prepared LNPs designed to exploit these different endocytic pathways for intracellular mRNA delivery to the two most abundant skin cell types, containing: (i) labile PEG-lipids (DMG-PEG2000) prone to dissociate and facilitate apoE-binding to LNPs, enabling apoE-LDLR mediated uptake in keratinocytes, (ii) non-labile PEG-lipids (DSPE-PEG2000) to impose stealth-like properties to LNPs to enable targeting of distant cells, and (iii) mannose-conjugated PEG-lipids (DSPE-PEG2000-Mannose) to target fibroblasts or potentially immune cells containing mannose receptors. All types of LNPs were prepared by vortex mixing and formed monodisperse (PDI ∼ 0.1) LNP samples with sizes of 130 nm (±25%) and high mRNA encapsulation efficiencies (≥90%). The LNP-mediated transfection potency in keratinocytes and fibroblasts was highest for LNPs containing labile PEG-lipids, with the addition of apoE greatly enhancing transfection via LDLR. Coating LNPs with mannose did not improve transfection, and stealth-like LNPs show limited to no transfection. Taken together, our studies suggest using labile PEG-lipids and co-administration of apoE when exploring LNPs for skin delivery.
Collapse
Affiliation(s)
- Camilla Hald Gregersen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark; Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Razan Mearraoui
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark; Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pia Pernille Søgaard
- In Vitro Biology, Molecular Biomedicine, Research and early development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Gael Clergeaud
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B Simonsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, 2750 Ballerup, Denmark.
| |
Collapse
|
6
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Farhangniya M, Samadikuchaksaraei A. A Review of Genes Involved in Wound Healing. Med J Islam Repub Iran 2023; 37:140. [PMID: 38318414 PMCID: PMC10843200 DOI: 10.47176/mjiri.37.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 02/07/2024] Open
Abstract
Background Gene therapy holds immense potential in the field of wound healing. However, we still do not recognize this procedure well enough to give oversight effectively to improve healing processes. A wide range of information has been achieved from the database for gene expression profiling by clinical trials, So we performed this study to gain a better understanding of the mechanisms behind wound healing and how it could be utilized to develop new therapies and treatments. Methods In this study, we have been focusing on wound-healing genes, conducting a thorough review to explore the various genes and pathways involved in this process. For this purpose, a total of 320 articles were collected. All experimental studies, systematic or narrative reviews, studies and clinical trials included in this paper were searched on PubMed, Medline, Embase, Science Direct, and Scopus databases in English using the following terms: Wound Healing, wound regeneration, Gene Transfer, and Gene Therapy were used to search the mentioned databases. Unfortunately, we didn't find a large sample cohort study on this topic. A total amount of 330 articles were collected based on the guidelines of the PRISMA method. Both inclusion and exclusion criteria were settled. Results During the last decade, different models of gene delivery have been introduced, which include viral transfection and Non-viral techniques. In this regard, TIMP-2 protein and VEGF mutants such as VEGF165, CARP, and HIF-1 are the genes that accelerate the rate of tissue repair. Conclusion The process of wound healing is mainly related to the change of expression of genes that have a role in the parts of inflammation and repair. In our study, some of the most suitable genes involved in the wound-healing process are mentioned.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B, Leung J, Shanta S, An K, Morin T, Chen Y, Arguello A, Choate K, Jan E, Ross CJ, Brambilla D, Witzigmann D, Kulkarni J, Cullis PR, Hedtrich S. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. ACS NANO 2023; 17:22046-22059. [PMID: 37918441 PMCID: PMC10655174 DOI: 10.1021/acsnano.3c08644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10-16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a pKa ∼ 7.1 yielded superior gene editing rates (55%-72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%-12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.
Collapse
Affiliation(s)
- Juliana Bolsoni
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Danny Liu
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Fatemeh Mohabatpour
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Ronja Ebner
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Gaurav Sadhnani
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
| | - Belal Tafech
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jerry Leung
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Selina Shanta
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Kevin An
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Tessa Morin
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Yihang Chen
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Alfonso Arguello
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Keith Choate
- Departments
of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven 06510, Connecticut, United States
| | - Eric Jan
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Colin J.D. Ross
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
| | - Davide Brambilla
- University
of Montréal, Faculty of Pharmacy, Montréal H3T 1J4, Quebec, Canada
| | - Dominik Witzigmann
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Jayesh Kulkarni
- NanoVation
Therapeutics, 2405 Wesbrook
Mall, Vancouver V6T 1Z3, BC, Canada
| | - Pieter R. Cullis
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, BC, Canada
| | - Sarah Hedtrich
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, BC, Canada
- Berlin
Institute of Health @ Charité Universitätsmedizin, Berlin 10117, Germany
- Department
of Infectious Diseases and Respiratory Medicine, Charité -
Universitätsmedizin Berlin, corporate
member of Freie Universität Berlin and Humboldt Universität, Berlin 10117, Germany
- Max-Delbrück
Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| |
Collapse
|
9
|
de Araujo MM, Borgheti-Cardoso LN, Praça FG, Marcato PD, Bentley MVLB. Solid Lipid-Polymer Hybrid Nanoplatform for Topical Delivery of siRNA: In Vitro Biological Activity and Permeation Studies. J Funct Biomater 2023; 14:374. [PMID: 37504869 PMCID: PMC10381295 DOI: 10.3390/jfb14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Small interfering RNA (siRNA) molecules have limited transfection efficiency and stability, necessitating the use of delivery systems to be effective in gene knockdown therapies. In this regard, lipid-polymeric nanocarriers have emerged as a promising class of nanoparticles for siRNA delivery, particularly for topical applications. We proposed the use of solid lipid-polymer hybrid nanoparticles (SLPHNs) as topical delivery systems for siRNA. This approach was evaluated by assessing the ability of SLPHNs-siRNA complexes to internalize siRNA molecules and both to penetrate skin layers in vitro and induce gene knocking down in a skin cell line. The SLPHNs were formed by a specific composition of solid lipids, a surfactant polymer as a dispersive agent, and a cationic polymer as a complexing agent for siRNA. The optimized nanocarriers exhibited a spherical shape with a smooth surface. The average diameter of the nanoparticles was found to be 200 nm, and the zeta potential was measured to be +20 mV. Furthermore, these nanocarriers demonstrated excellent stability when stored at 4 °C over a period of 90 days. In vitro and in vivo permeation studies showed that SLPHNs increased the cutaneous penetration of fluorescent-labeled siRNA, which reached deeper skin layers. Efficacy studies were conducted on keratinocytes and fibroblasts, showing that SLPHNs maintained cell viability and high cellular uptake. Furthermore, SLPHNs complexed with siRNA against Firefly luciferase (siLuc) reduced luciferase expression, proving the efficacy of this nanocarrier in providing adequate intracellular release of siRNA for silencing specific genes. Based on these results, the developed carriers are promising siRNA delivery systems for skin disease therapy.
Collapse
Affiliation(s)
- Margarete Moreno de Araujo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Livia Neves Borgheti-Cardoso
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Priscyla Daniely Marcato
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
10
|
Chang YT, Huang TH, Alalaiwe A, Hwang E, Fang JY. Small interfering RNA-based nanotherapeutics for treating skin-related diseases. Expert Opin Drug Deliv 2023:1-16. [PMID: 37088710 DOI: 10.1080/17425247.2023.2206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
11
|
Fan X, Zhao X, Xu J, Wang J, Wang Q, Tang X. Triton modified polyethyleneimine conjugates assembled with growth arrest-specific protein 6 for androgenetic alopecia transdermal gene therapy. Mater Today Bio 2023; 19:100575. [PMID: 36815198 PMCID: PMC9939716 DOI: 10.1016/j.mtbio.2023.100575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Androgenetic alopecia is an androgen-dependent skin disorder that commonly affects hair follicle growth and hair loss. Gene therapy that can promote the proliferation and survival of hair follicle cells can be a potential choice for its cure. While transdermal application of therapeutic functional nucleic acids across the stratum corneum is quite difficult. Here, we first develop a transdermal agent for functional nucleic acid delivery using Triton X-100-modified low molecular weight polyethyleneimine (PEI-Triton-N, N = 6 or 8). In vitro cell experiments demonstrate that the PEI-Triton-N conjugates can stably encapsulate and efficiently deliver plasmid DNA to hard-to-transfect keratinocyte HaCaT cells. Further mouse model studies show that PEI-Triton-6 can encapsulate and deliver growth arrest-specific protein 6 (Gas6) plasmid through transdermal administration. The transfected Gas6 prolongs the anagen status, inhibits the apoptosis of hair follicle cells, and further promotes the proliferation and differentiation of hair follicle cells. The PEI-Triton-6/pDNAGas6 complexes can obviously alleviate hair loss in androgenetic alopecia mice and provides a promising strategy for gene therapy via transdermal administration.
Collapse
Affiliation(s)
- Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Jianfei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China,Corresponding author. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, and Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, No. 38, Xueyuan Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
12
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
13
|
Zhu T, Zhang W, Jiang P, Zhou S, Wang C, Qiu L, Shi H, Cui P, Wang J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 2022; 39:2475-2486. [PMID: 36008737 DOI: 10.1007/s11095-022-03376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
14
|
Braun CJ, Adames AC, Saur D, Rad R. Tutorial: design and execution of CRISPR in vivo screens. Nat Protoc 2022; 17:1903-1925. [PMID: 35840661 DOI: 10.1038/s41596-022-00700-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
Here we provide a detailed tutorial on CRISPR in vivo screening. Using the mouse as the model organism, we introduce a range of CRISPR tools and applications, delineate general considerations for 'transplantation-based' or 'direct in vivo' screening design, and provide details on technical execution, sequencing readouts, computational analyses and data interpretation. In vivo screens face unique pitfalls and limitations, such as delivery issues or library bottlenecking, which must be counteracted to avoid screening failure or flawed conclusions. A broad variety of in vivo phenotypes can be interrogated such as organ development, hematopoietic lineage decision and evolutionary licensing in oncogenesis. We describe experimental strategies to address various biological questions and provide an outlook on emerging CRISPR applications, such as genetic interaction screening. These technological advances create potent new opportunities to dissect the molecular underpinnings of complex organismal phenotypes.
Collapse
Affiliation(s)
- Christian J Braun
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany. .,Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Andrés Carbonell Adames
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Dieter Saur
- Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
15
|
Bhat P, Garibyan L. The Potential of CRISPR-Guided Therapies in the Dermatology Clinic. JID INNOVATIONS 2022; 2:100103. [PMID: 35265937 PMCID: PMC8899042 DOI: 10.1016/j.xjidi.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, CRISPR has rapidly made its way from the bench to the bedside, providing a newfound therapeutic avenue to not only treat genetic diseases but also permanently cure them. Although there are several clinical trials in early stages, there are so far no CRISPR-based clinical trials for cutaneous disease. In this review, we describe multiple cutaneous diseases that represent ideal targets for CRISPR-based therapeutics owing to known single gene‒causing mutations. We also explore the potential of CRISPR nucleases to treat inflammatory disorders such as eczema and psoriasis, which are not classically categorized as genodermatoses. We describe the therapeutic solutions for these diseases that are guided by various CRISPR-associated (Cas) effector proteins, for example, using Cas9 to permanently edit the DNA of somatic cells, Cas3 to target foreign DNA to combat viral/bacterial skin infections, and Cas13 to edit mutated RNA transcripts in diseases where permanent DNA editing is untenable. Furthermore, we discuss various drug delivery modalities for CRISPR therapeutics, including transdermal patches and microneedles, which are uniquely suited for dermatological diseases. In summary, we highlight the potential of CRISPR-based therapeutics to revolutionize the treatment of cutaneous disease with a goal of being accessible to the practicing dermatologist.
Collapse
Affiliation(s)
- Prashant Bhat
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Lilit Garibyan
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Neha Tiwari
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Ana Sonzogni
- Group of Polymers and Polymerization Reactors INTEC (Universidad Nacional del Litoral-CONICET) Güemes 3450 Santa Fe 3000 Argentina
| | - David Esporrín‐Ubieto
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Huiyi Wang
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Marcelo Calderón
- POLYMAT Applied Chemistry Department Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
17
|
Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for Skin Applications: Where Do We Stand? Angew Chem Int Ed Engl 2022; 61:e202107960. [PMID: 34487599 PMCID: PMC9292798 DOI: 10.1002/anie.202107960] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Skin penetration of active molecules for treatment of diverse diseases is a major field of research owing to the advantages associated with the skin like easy accessibility, reduced systemic-derived side effects, and increased therapeutic efficacy. Despite these advantages, dermal drug delivery is generally challenging due to the low skin permeability of therapeutics. Although various methods have been developed to improve skin penetration and permeation of therapeutics, they are usually aggressive and could lead to irreversible damage to the stratum corneum. Nanosized carrier systems represent an alternative approach for current technologies, with minimal damage to the natural barrier function of skin. In this Review, the use of nanoparticles to deliver drug molecules, genetic material, and vaccines into the skin is discussed. In addition, nanotoxicology studies and the recent clinical development of nanoparticles are highlighted to shed light on their potential to undergo market translation.
Collapse
Affiliation(s)
- Neha Tiwari
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ernesto Rafael Osorio‐Blanco
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Ana Sonzogni
- Group of Polymers and Polymerization ReactorsINTEC (Universidad Nacional del Litoral-CONICET)Güemes 3450Santa Fe3000Argentina
| | - David Esporrín‐Ubieto
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Huiyi Wang
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
| | - Marcelo Calderón
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque CountryUPV/EHUPaseo Manuel de Lardizabal 320018Donostia-San SebastiánSpain
- IKERBASQUE, Basque Foundation for Science48009BilbaoSpain
| |
Collapse
|
18
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
19
|
Tortajada L, Felip C, Vicent MJ. Polymer-based Non-viral Vectors for Gene Therapy in the Skin. Polym Chem 2022. [DOI: 10.1039/d1py01485d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene therapy has emerged as a versatile technique with the potential to treat a range of human diseases; however, examples of the topical application of gene therapy as a treatment...
Collapse
|
20
|
Induced Pluripotent Stem Cells (iPSCs) and Gene Therapy: A New Era for the Treatment of Neurological Diseases. Int J Mol Sci 2021; 22:ijms222413674. [PMID: 34948465 PMCID: PMC8706293 DOI: 10.3390/ijms222413674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
To date, gene therapy has employed viral vectors to deliver therapeutic genes. However, recent progress in molecular and cell biology has revolutionized the field of stem cells and gene therapy. A few years ago, clinical trials started using stem cell replacement therapy, and the induced pluripotent stem cells (iPSCs) technology combined with CRISPR-Cas9 gene editing has launched a new era in gene therapy for the treatment of neurological disorders. Here, we summarize the latest findings in this research field and discuss their clinical applications, emphasizing the relevance of recent studies in the development of innovative stem cell and gene editing therapeutic approaches. Even though tumorigenicity and immunogenicity are existing hurdles, we report how recent progress has tackled them, making engineered stem cell transplantation therapy a realistic option.
Collapse
|
21
|
Steinle H, Weber J, Stoppelkamp S, Große-Berkenbusch K, Golombek S, Weber M, Canak-Ipek T, Trenz SM, Schlensak C, Avci-Adali M. Delivery of synthetic mRNAs for tissue regeneration. Adv Drug Deliv Rev 2021; 179:114007. [PMID: 34710530 DOI: 10.1016/j.addr.2021.114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.
Collapse
Affiliation(s)
- Heidrun Steinle
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Josefin Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sandra Stoppelkamp
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Katharina Große-Berkenbusch
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sonia Golombek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Marbod Weber
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Tuba Canak-Ipek
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Sarah-Maria Trenz
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Christian Schlensak
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Meltem Avci-Adali
- University Hospital Tuebingen, Department of Thoracic and Cardiovascular Surgery, Calwerstraße 7/1, 72076 Tuebingen, Germany.
| |
Collapse
|
22
|
Chen L, Guo X, Wang L, Geng J, Wu J, Hu B, Wang T, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS. Drug Deliv 2021; 28:1637-1648. [PMID: 34338123 PMCID: PMC8330795 DOI: 10.1080/10717544.2021.1960922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.,Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Bin Hu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Experimental Models for the Study of Hereditary Cornification Defects. Biomedicines 2021; 9:biomedicines9030238. [PMID: 33652877 PMCID: PMC7996736 DOI: 10.3390/biomedicines9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ichthyoses comprise a broad spectrum of keratinization disorders due to hereditary defects of cornification. Until now, mutations in more than 50 genes, mostly coding for structural proteins involved in epidermal barrier formation, have been identified as causes for different types of these keratinization disorders. However, due to the high heterogeneity and difficulties in the establishment of valid experimental models, research in this field remains challenging and translation of novel findings to clinical practice is difficult. In this review, we provide an overview of existing models to study hereditary cornification defects with focus on ichthyoses and palmoplantar keratodermas.
Collapse
|