1
|
Martin GB, Fordyce G, McGowan MR, Juengel JL. Perspectives for reproduction and production in grazing sheep and cattle in Australasia: The next 20 years. Theriogenology 2024; 230:174-182. [PMID: 39305854 DOI: 10.1016/j.theriogenology.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
We offer a perspective on the major challenges that are confronting the management of reproduction in sheep and cattle in Australia and New Zealand, over the next two decades. An important context is the dominance of grazing systems in which large flocks or herds are managed over large areas where it is challenging to manage reproduction with precision. Consequently, the variable forage supply usually dominates reproductive outcomes, a problem that will be exacerbated by global heating. Thus, in extensive grazing systems, there is a great need for technological solutions to improve the management of nutrition. Global heating will also exert direct effects on reproductive function. Therefore, for the foreseeable future, reproduction will remain a focus for industry. In addition, as the industries develop, we foresee continued societal pressure to reduce medication, mitigate environmental damage, and improve animal well-being. Management solutions for extensive grazing systems must involve minimal interventions with the animals and be applicable to diverse genotypes and environments. Clearly, genetics and breeding will be at the heart of solutions and elegant strategies will be needed that focus on developing animals that are robust, if perhaps a little less productive. A high rate of genetic gain is the main reason for pursuing reproductive technologies, but highly advanced reproductive technology is not likely to be the best fit in extensive management systems. Even for AI, the simplest technology, uptake is limited and lateral thinking is needed to find ways to improve the rates of genetic gain. We conclude that there are many opportunities for improving reproductive performance in sheep and cattle in Australia and New Zealand. As we gain deeper understanding of the processes involved, we should be able to make progress in fertility and fecundity, embryo survival, and postnatal survival. Improvements in reproductive performance will increase productivity, and should also be associated with significantly improved animal well-being and a reduction in methane emissions intensity. To capture these benefits, the development of new management options will require lateral thinking about reproductive technology for extensive grazing systems, and a transdisciplinary approach that brings together the systems biology of grazing animals with an understanding of the barriers to adoption by farmers.
Collapse
Affiliation(s)
- Graeme B Martin
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia.
| | - Geoffry Fordyce
- The University of Queensland, Queensland Alliance for Agricultural and Food Innovation, Carmody Road, St Lucia, Qld, 4072, Australia
| | - Michael R McGowan
- The University of Queensland, School of Veterinary Science, Warrego Highway, Gatton, Qld, 4343, Australia
| | - Jennifer L Juengel
- Agricultural Systems and Reproduction, Animal Science, Invermay Agricultural Centre, AgResearch Ltd, Puddle Alley, Mosgiel, 9092, New Zealand.
| |
Collapse
|
2
|
Ledesma AV, Van Eenennaam AL. Global status of gene edited animals for agricultural applications. Vet J 2024; 305:106142. [PMID: 38788996 DOI: 10.1016/j.tvjl.2024.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Gene editing (GnEd) involves using a site-directed nuclease to introduce a double-strand break (DSB) at a targeted location in the genome. A literature search was performed on the use of GnEd in animals for agricultural applications. Data was extracted from 212 peer-reviewed articles that described the production of at least one living animal employing GnEd technologies for agricultural purposes. The most common GnEd system reported was CRISPR/Cas9, and the most frequent type of edit was the unguided insertion or deletion resulting from the repair of the targeted DSB leading to a knock-out (KO) mutation. Animal groups included in the reviewed papers were ruminants (cattle, sheep, goats, n=63); monogastrics (pigs and rabbits, n=60); avian (chicken, duck, quail, n=17); aquatic (many species, n=65), and insects (honeybee, silkworm, n=7). Yield (32%), followed by reproduction (21%) and disease resistance (17%) were the most commonly targeted traits. Over half of the reviewed papers had Chinese first-authorship. Several countries, including Argentina, Australia, Brazil, Colombia and Japan, have adopted a regulatory policy that considers KO mutations introduced following GnEd DSB repair as akin to natural genetic variation, and therefore treat these GnEd animals analogously to those produced using conventional breeding. This approach has resulted in a non-GMO determination for a small number of GnEd food animal applications, including three species of GnEd KO fast-growing fish, (red sea bream, olive flounder and tiger pufferfish in Japan), KO fish and cattle in Argentina and Brazil, and porcine reproductive and respiratory syndrome (PRRS) virus disease-resistant KO pigs in Colombia.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
3
|
Mueller ML, McNabb BR, Owen JR, Hennig SL, Ledesma AV, Angove ML, Conley AJ, Ross PJ, Van Eenennaam AL. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Front Genome Ed 2023; 5:1321243. [PMID: 38089499 PMCID: PMC10711618 DOI: 10.3389/fgeed.2023.1321243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
NANOS3 is expressed in migrating primordial germ cells (PGCs) to protect them from apoptosis, and it is known to be a critical factor for germline development of both sexes in several organisms. However, to date, live NANOS3 knockout (KO) cattle have not been reported, and the specific role of NANOS3 in male cattle, or bulls, remains unexplored. This study generated NANOS3 KO cattle via cytoplasmic microinjection of the CRISPR/Cas9 system in vitro produced bovine zygotes and evaluated the effect of NANOS3 elimination on bovine germline development, from fetal development through reproductive age. The co-injection of two selected guide RNA (gRNA)/Cas9 ribonucleoprotein complexes (i.e., dual gRNA approach) at 6 h post fertilization achieved a high NANOS3 KO rate in developing embryos. Subsequent embryo transfers resulted in a 31% (n = 8/26) pregnancy rate. A 75% (n = 6/8) total KO rate (i.e., 100% of alleles present contained complete loss-of-function mutations) was achieved with the dual gRNA editing approach. In NANOS3 KO fetal testes, PGCs were found to be completely eliminated by 41-day of fetal age. Importantly, despite the absence of germ cells, seminiferous tubule development was not impaired in NANOS3 KO bovine testes during fetal, perinatal, and adult stages. Moreover, a live, NANOS3 KO, germline-ablated bull was produced and at sexual maturity he exhibited normal libido, an anatomically normal reproductive tract, and intact somatic gonadal development and structure. Additionally, a live, NANOS3 KO, germline-ablated heifer was produced. However, it was evident that the absence of germ cells in NANOS3 KO cattle compromised the normalcy of ovarian development to a greater extent than it did testes development. The meat composition of NANOS3 KO cattle was unremarkable. Overall, this study demonstrated that the absence of NANOS3 in cattle leads to the specific deficiency of both male and female germ cells, suggesting the potential of NANOS3 KO cattle to act as hosts for donor-derived exogenous germ cell production in both sexes. These findings contribute to the understanding of NANOS3 function in cattle and have valuable implications for the development of novel breeding technologies using germline complementation in NANOS3 KO germline-ablated hosts.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Bret R. McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joseph R. Owen
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Sadie L. Hennig
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alba V. Ledesma
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Mitchell L. Angove
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alan J. Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|