1
|
Probst A, Knochenhauer D, Niemeyer J, Fischer L, Schroda M. Internalization of affinity tags enables the purification of secreted Chlamydomonas proteins. Curr Genet 2025; 71:7. [PMID: 40105958 PMCID: PMC11923035 DOI: 10.1007/s00294-025-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
There is great interest in establishing microalgae as new platforms for the sustainable production of high-value products such as recombinant proteins. Many human therapeutic proteins must be glycosylated, which requires their passage through the secretory pathway into the culture medium. While the low complexity of proteins in the culture medium should facilitate affinity purification of secreted recombinant proteins, this has proven challenging for proteins secreted by the unicellular green alga Chlamydomonas reinhardtii. In Leishmania tarentulae, we observed that C-terminally exposed affinity tags are frequently truncated, presumably due to proteolytic activity. We wondered whether this might also occur in Chlamydomonas and contribute to the difficulties in affinity purification of secreted proteins in this alga. Using the methionine-rich 2S albumin from Bertholletia excelsa and the ectodomain of the SARS-CoV-2 spike protein produced and secreted in Chlamydomonas, we demonstrate that they can be efficiently affinity-purified from the culture medium by Ni-NTA chromatography when the 8xHis affinity tag is internalized. This finding represents an important step towards further development of Chlamydomonas as a host for the sustainable production of high-value recombinant proteins.
Collapse
Affiliation(s)
- Anna Probst
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul- Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Doreen Knochenhauer
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul- Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Justus Niemeyer
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul- Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Laura Fischer
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul- Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, RPTU Kaiserslautern-Landau, Paul- Ehrlich-Straße 23, D-67663, Kaiserslautern, Germany.
| |
Collapse
|
2
|
Dutta S, Kataki S, Banerjee I, Pohrmen CB, Jaiswal KK, Jaiswal AK. Microalgal biorefineries in sustainable biofuel production and other high-value products. N Biotechnol 2025:S1871-6784(25)00023-8. [PMID: 40023220 DOI: 10.1016/j.nbt.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Microalgae has been emerging as a promising solution against the backdrop of the global need for sustainable, eco-friendly alternatives. This review article analyses the use of photosynthetic microalgae as an important resource for sustainable biofuel and high value bioproduct production, emphasizing the potential of self-sustaining microalgae biorefineries. A closed-loop, integrated multi-product producing microalgal biorefinery approach could significantly reduce the indicated negative environmental and energy impact from standalone microalgal biofuel generation. The economic feasibility of these biorefineries is linked to their recovery rate, improved by integrating various unit operations as well as multiple product dimensions under optimal conditions, enhancing resource recovery, process efficiency, and profitability. This approach ensures profitability and ubiquitous implementation of microalgal biorefineries, offering a sustainable solution to market demands. In conclusion, making microalgae biorefineries a major player in sustainable bioeconomy underscores the necessity of interdisciplinary research to surmount current challenges and completely realize their advantages.
Collapse
Affiliation(s)
- Swapnamoy Dutta
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, 784001, Assam, India
| | - Ishita Banerjee
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Cheryl Bernice Pohrmen
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India.
| | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland.
| |
Collapse
|
3
|
Hu J, Liu P, Wang Q, Nie X, Tan J, Shu J, Mai J, Cao Y, Zou Y, Huang Z. Pilot-scale production of selenium-enriched Nostoc sphaeroides colonies and polysaccharides using two-phase cultivation strategy. BIORESOURCE TECHNOLOGY 2025; 417:131851. [PMID: 39580095 DOI: 10.1016/j.biortech.2024.131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Nostoc sphaeroides, originally discovered in selenium-rich fields, is a photosynthetic, nitrogen-fixing cyanobacterium that forms edible spherical macrocolonies. However, prolonged selenium supplementation negatively impacts colony quality in culture. To address this, a two-phase cultivation strategy was developed to spatiotemporally separate biomass accumulation from selenium enrichment, resulting in high-quality selenium-enriched N. sphaeroides colonies. The first phase focused on colony growth in nitrogen-free BG-110 medium, while the second phase emphasized selenium enrichment in selenium-supplemented, phosphorus-reduced, and nitrogen-containing BG-11 medium ("selenium enrichment medium"). Scale-up to 300 L confirmed the robustness of this process, achieving desired colony hardness of ∼3 newtons, selenium content of ∼350 μg/g, and yield of ∼0.5 g/L (dry weight). Additionally, polysaccharides containing ∼110 μg/g selenium were isolated from the colonies, exhibiting biochemical properties similar to selenium-free polysaccharides from control colonies. These results provide valuable insight into the potential of N. sphaeroides as a cell factory chassis for producing selenium bioproducts.
Collapse
Affiliation(s)
- Jingjing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China
| | - Peihua Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China
| | - Qiangqiang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Xuyuan Nie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jianhua Tan
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China; Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Junchao Shu
- Colobeauty Institute for Aging Reseach, Colobeauty (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510800, China
| | - Junjian Mai
- Colobeauty Institute for Aging Reseach, Colobeauty (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510800, China
| | - Yi Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Yongdong Zou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Zebo Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Biocosmetics, Guangzhou 510641, China.
| |
Collapse
|
4
|
Gamberi C, Leverette CL, Davis AC, Ismail M, Piccialli I, Borbone N, Oliviero G, Vicidomini C, Palumbo R, Roviello GN. Oceanic Breakthroughs: Marine-Derived Innovations in Vaccination, Therapy, and Immune Health. Vaccines (Basel) 2024; 12:1263. [PMID: 39591167 PMCID: PMC11598900 DOI: 10.3390/vaccines12111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as Nannochloropsis spp. and Dunaliella salina are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in Dunaliella salina and Nannochloropsis spp. to induce immunoprotection. In humans, several antigens produced in microalgae have shown potential in combating diseases caused by the human papillomavirus, human immunodeficiency virus, hepatitis B virus, influenza virus, Zika virus, Zaire Ebola virus, Plasmodium falciparum, and Staphylococcus aureus. For animals, microalgae-derived vaccine prototypes have been developed to fight against the foot-and-mouth disease virus, classical swine fever virus, vibriosis, white spot syndrome virus, and Histophilus somni. Marine organisms offer unique advantages, including the ability to express complex antigens and sustainable production. Additionally, the oceans provide an array of bioactive compounds that serve as therapeutics, potent adjuvants, delivery systems, and immunomodulatory agents. These innovations from the sea not only enhance vaccine efficacy but also contribute to broader immunological and general health. This review explores the transformative role of marine-derived substances in modern medicine, emphasizing their importance in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Chad L. Leverette
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Alexis C. Davis
- Department of Biology, Coastal Carolina University, Conway, SC 29526, USA; (C.G.); (C.L.L.); (A.C.D.)
| | - Moayad Ismail
- Faculty of Medicine, European University, 76 Guramishvili Ave., 0141 Tbilisi, Georgia;
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Research Council (IBB-CNR), Via P. Castellino 111, 80131 Naples, Italy; (C.V.); (R.P.)
| |
Collapse
|
5
|
Yuan X, Zhong M, Huang X, Hussain Z, Ren M, Xie X. Industrial Production of Functional Foods for Human Health and Sustainability. Foods 2024; 13:3546. [PMID: 39593962 PMCID: PMC11593949 DOI: 10.3390/foods13223546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Functional foods significantly affect social stability, human health, and food security. Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods. Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional foods serve a as key extension of functional agriculture and offer assurance of food availability for future space exploration efforts. This review summarises the main bioactive ingredients in functional foods and their functions, describes the strategies used for the nutritional fortification and industrial production of functional foods, and provides insights into the challenges and future developments in the applications of plants and microorganisms in functional foods. Our review aims to provide a theoretical basis for the development of functional foods, ensure the successful production of new products, and support the U.N. Sustainable Development Goals, including no poverty, zero hunger, and good health and well-being.
Collapse
Affiliation(s)
- Xinrui Yuan
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Moyu Zhong
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Xinxin Huang
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zahid Hussain
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiulan Xie
- Functional Plant Cultivation and Application Teams, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
| |
Collapse
|
6
|
Wang X, Ma S, Kong F. Microalgae Biotechnology: Methods and Applications. Bioengineering (Basel) 2024; 11:965. [PMID: 39451341 PMCID: PMC11506088 DOI: 10.3390/bioengineering11100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Microalgae are regarded as sustainable and promising chassis for biotechnology due to their efficient photosynthesis and ability to convert CO2 into valuable products [...].
Collapse
Affiliation(s)
| | | | - Fantao Kong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (X.W.); (S.M.)
| |
Collapse
|
7
|
Kneip JS, Kniepkamp N, Jang J, Mortaro MG, Jin E, Kruse O, Baier T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1393. [PMID: 38794462 PMCID: PMC11125023 DOI: 10.3390/plants13101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Carotenoids are valuable pigments naturally occurring in all photosynthetic plants and microalgae as well as in selected fungi, bacteria, and archaea. Green microalgae developed a complex carotenoid profile suitable for efficient light harvesting and light protection and harbor great capacity for carotenoid production through the substantial power of the endogenous 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Previous works established successful genome editing and induced significant changes in the cellular carotenoid content in Chlamydomonas reinhardtii. This study employs a tailored carotenoid pathway for engineered bioproduction of the valuable ketocarotenoid astaxanthin. Functional knockout of lycopene ε-cyclase (LCYE) and non-homologous end joining (NHEJ)-based integration of donor DNA at the target site inhibit the accumulation of α-carotene and consequently lutein and loroxanthin, abundant carotenoids in C. reinhardtii without changes in cellular fitness. PCR-based screening indicated that 4 of 96 regenerated candidate lines carried (partial) integrations of donor DNA and increased ß-carotene as well as derived carotenoid contents. Iterative overexpression of CrBKT, PacrtB, and CrCHYB resulted in a 2.3-fold increase in astaxanthin accumulation in mutant ΔLCYE#3 (1.8 mg/L) compared to the parental strain UVM4, which demonstrates the potential of genome editing for the design of a green cell factory for astaxanthin bioproduction.
Collapse
Affiliation(s)
- Jacob Sebastian Kneip
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Niklas Kniepkamp
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Maria Grazia Mortaro
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Goold HD, Moseley JL, Lauersen KJ. The synthetic future of algal genomes. CELL GENOMICS 2024; 4:100505. [PMID: 38395701 PMCID: PMC10943592 DOI: 10.1016/j.xgen.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Algae are diverse organisms with significant biotechnological potential for resource circularity. Taking inspiration from fermentative microbes, engineering algal genomes holds promise to broadly expand their application ranges. Advances in genome sequencing with improvements in DNA synthesis and delivery techniques are enabling customized molecular tool development to confer advanced traits to algae. Efforts to redesign and rebuild entire genomes to create fit-for-purpose organisms currently being explored in heterotrophic prokaryotes and eukaryotic microbes could also be applied to photosynthetic algae. Future algal genome engineering will enhance yields of native products and permit the expression of complex biochemical pathways to produce novel metabolites from sustainable inputs. We present a historical perspective on advances in engineering algae, discuss the requisite genetic traits to enable algal genome optimization, take inspiration from whole-genome engineering efforts in other microbes for algal systems, and present candidate algal species in the context of these engineering goals.
Collapse
Affiliation(s)
- Hugh D Goold
- New South Wales Department of Primary Industries, Orange, NSW 2800, Australia; ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia; School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jeffrey L Moseley
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Phycoil Biotechnology International, Inc., Fremont, CA 94538, USA
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|