1
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Kami K, Ohira T, Oishi Y, Nakajima T, Goto K, Ohira Y. Role of 72-kDa Heat Shock Protein in Heat-stimulated Regeneration of Injured Muscle in Rat. J Histochem Cytochem 2019; 67:791-799. [PMID: 31233366 DOI: 10.1369/0022155419859861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regeneration of injured muscles is facilitated by intermittent heat stress. The 72-kDa heat shock protein (HSP72), the level of which is increased by heat stress, is likely involved in this effect, but the precise mechanism remains unclear. This study was conducted to investigate the localization and role(s) of HSP72 in the regenerating muscles in heat-stressed rats using immunohistochemistry. Heat stress was applied by immersion of the rat lower body into hot water (42C, 30 min, every other day) following injection of bupivacaine into the soleus muscles. After 1 week, we found that HSP72 was expressed at high levels not only in the surviving myofibers but also in the blood vessels of the regenerating muscles in heated rats. In addition, leukocytes, possibly granulocytes, expressing cluster of differentiation 43 within the blood capillaries surrounding the regenerating myofibers also highly expressed HSP72. In contrast, marked expression of HSP72 was not observed in the intact or regenerating muscles without heat stress. These results suggest that heat-stress-induced HSP72 within the myofibers, blood vessels, and circulating leukocytes may play important roles in enhancing regeneration of injured muscles by heat stress. Our findings would be useful to investigate cell-specific role(s) of HSP72 during skeletal muscle regeneration.
Collapse
Affiliation(s)
- Katsuya Kami
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takashi Ohira
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yasuharu Oishi
- Faculty of Education, Kumamoto University, Kumamoto, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takayuki Nakajima
- Department of Clinical Medicine, The Jikei University Hospital, Tokyo, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yoshinobu Ohira
- Graduate School of Medicine, Osaka University, Osaka, Japan.,Research Center for Space and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
3
|
Umehara T, Murase T, Abe Y, Yamashita H, Shibaike Y, Kagawa S, Yamamoto T, Ikematsu K. Identification of potential markers of fatal hypothermia by a body temperature-dependent gene expression assay. Int J Legal Med 2018; 133:335-345. [PMID: 29959558 DOI: 10.1007/s00414-018-1888-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Diagnosis of fatal hypothermia is considered to be difficult in forensic practice and even if findings due to cold exposure are evident, cold exposure is not necessarily a direct cause of death. Identification of useful molecular markers for the diagnosis of fatal hypothermia has not been successful. In this study, to identify novel molecular markers that inform the diagnosis of fatal hypothermia, we focused on skeletal muscle, which plays a role in cold-induced thermogenesis in mammals. We made rat models of mild, moderate, and severe hypothermia and performed body temperature-dependent gene expression analysis in the iliopsoas muscle using next-generation sequencing (NGS). NGS showed that after severe hypothermia, the expression levels of 91 mRNAs were more than double those in mild and moderate hypothermia and control animals. Gene ontology (GO) analysis indicated that these mRNAs are involved in a number of biological processes, including response to stress and lipids, and cellular response to hypoxia. The expression of four genes [connective tissue growth factor (Ctgf), JunB proto-oncogene, AP-1 transcription factor subunit (Junb), nuclear receptor subfamily 4, group A, member 1 (Nr4a1), and Syndecan 4 (Sdc4)] and the level of one protein (CTGF) were induced only by severe hypothermia. These genes and protein are involved in muscle regeneration, tissue repair, and lipid metabolism. These results indicate that heat production to maintain body temperature in a process leading to fatal hypothermia might be performed by the iliopsoas muscle, and that Ctgf, Junb, Nr4a1, and Sdc4 genes are potential diagnostic markers for fatal hypothermia.
Collapse
Affiliation(s)
- Takahiro Umehara
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Yuki Abe
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Hiromi Yamashita
- Center for Forensic Pathology and Science, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Yoshinori Shibaike
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Shinichiro Kagawa
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Takuma Yamamoto
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| |
Collapse
|
4
|
Timmermans K, Kox M, Gerretsen J, Peters E, Scheffer GJ, van der Hoeven JG, Pickkers P, Hoedemaekers CW. The Involvement of Danger-Associated Molecular Patterns in the Development of Immunoparalysis in Cardiac Arrest Patients. Crit Care Med 2016. [PMID: 26196352 DOI: 10.1097/ccm.0000000000001204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES After cardiac arrest, patients are highly vulnerable toward infections, possibly due to a suppressed state of the immune system called "immunoparalysis." We investigated if immunoparalysis develops following cardiac arrest and whether the release of danger-associated molecular patterns could be involved. DESIGN Observational study. SETTING ICU of a university medical center. PATIENTS Fourteen post-cardiac arrest patients treated with mild therapeutic hypothermia for 24 hours and 11 control subjects. MEASUREMENTS AND MAIN RESULTS Plasma cytokines showed highest levels within 24 hours after cardiac arrest and decreased during the next 2 days. By contrast, ex vivo production of cytokines interleukin-6, tumor necrosis factor-α, and interleukin-10 by lipopolysaccharide-stimulated leukocytes was severely impaired compared with control subjects, with most profound effects observed at day 0, and only partially recovering afterward. Compared with incubation at 37°C, incubation at 32°C resulted in higher interleukin-6 and lower interleukin-10 production by lipopolysaccharide-stimulated leukocytes of control subjects, but not of patients. Plasma nuclear DNA, used as a marker for general danger-associated molecular pattern release, and the specific danger-associated molecular patterns (EN-RAGE and heat shock protein 70) were substantially higher in patients at days 0 and 1 compared with control subjects. Furthermore, plasma heat shock protein 70 levels were negatively correlated with ex vivo production of inflammatory mediators interleukin-6, tumor necrosis factor-α, and interleukin-10. Extracellular newly identified receptor for advanced glycation end products-binding protein levels only showed a significant negative correlation with ex vivo production of interleukin-6 and tumor necrosis factor-α and a borderline significant inverse correlation with interleukin-10. No significant correlations were observed between plasma nuclear DNA levels and ex vivo cytokine production. INTERVENTIONS None. CONCLUSIONS Release of danger-associated molecular patterns during the first days after cardiac arrest is associated with the development of immunoparalysis. This could explain the increased susceptibility toward infections in cardiac arrest patients.
Collapse
Affiliation(s)
- Kim Timmermans
- 1Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. 2Department of Anesthesiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands. 3Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Estimates of exposure to cold before death from immunohistochemical expression patterns of HSP70 in glomerular podocytes. Int J Legal Med 2012; 127:783-90. [DOI: 10.1007/s00414-012-0806-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/03/2012] [Indexed: 12/16/2022]
|
6
|
Sarraf NS, Baardsnes J, Cheng J, O'Connor-McCourt M, Cygler M, Ekiel I. Structural basis of the regulation of the CbpA co-chaperone by its specific modulator CbpM. J Mol Biol 2010; 398:111-21. [PMID: 20226195 DOI: 10.1016/j.jmb.2010.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 01/27/2023]
Abstract
CbpA, one of the Escherichia coli DnaJ homologues, acts as a co-chaperone in the DnaK chaperone system. Despite its extensive similarity in domain structure and function to DnaJ, CbpA has a unique and specific regulatory mechanism mediated through the small protein CbpM. Both CbpA and CbpM are highly conserved in bacteria. Earlier studies showed that CbpM interacts with the N-terminal J-domain of CbpA inhibiting its co-chaperone activity but the structural basis of this interaction is not known. Here, we have combined NMR spectroscopy, site-directed mutagenesis and surface plasmon resonance to characterize the CbpA/CbpM interaction at the molecular level. We have determined the solution structure of the CbpA J-domain and mapped the residues that are perturbed upon CbpM binding. The NMR data defined a broad region on helices alpha2 and alpha 3 as involved in the interactions. Site-directed mutagenesis has been used to further delineate the CbpA J-domain/CbpM interface. We show that the binding sites of CbpM and DnaK on CbpA J-domain overlap, which suggests a competition between DnaK and CbpM for binding to CbpA as a mechanism for CbpA regulation. This study also provides the explanation for the specificity of CbpM for CbpA versus DnaJ, by identifying the key residues for differential binding.
Collapse
Affiliation(s)
- Naghmeh S Sarraf
- Health Sector, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Turturici G, Geraci F, Candela ME, Giudice G, Gonzalez F, Sconzo G. Hsp70 localizes differently from chaperone Hsc70 in mouse mesoangioblasts under physiological growth conditions. J Mol Histol 2008; 39:571-8. [DOI: 10.1007/s10735-008-9197-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
8
|
Preuß J, Dettmeyer R, Poster S, Lignitz E, Madea B. The expression of heat shock protein 70 in kidneys in cases of death due to hypothermia. Forensic Sci Int 2008; 176:248-52. [DOI: 10.1016/j.forsciint.2007.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 08/27/2007] [Accepted: 09/22/2007] [Indexed: 11/17/2022]
|
9
|
Kao YH, Goto S, Jawan B, Nakano T, Hsu LW, Lin YC, Pan MC, Lai CY, Sun CK, Cheng YF, Tai MH, Huang HT, Chen CL. Heat preconditioning ameliorates hepatocyte viability after cold preservation and rewarming, and modulates its immunoactivity. Transpl Immunol 2008; 18:220-31. [PMID: 18047929 DOI: 10.1016/j.trim.2007.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/23/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heat preconditioning significantly preserved liver graft function after cold preservation in animal experimental model. The elevation of heat shock protein 70 (HSP70) was claimed to play a critical role in protecting grafts against cold preservation-induced hepatocyte apoptosis. However, little is known about whether HSP70 also plays an immunomodulatory role in cold preserved cells. This study aimed at investigating the relationship between HSP70 protein and the immunoactivity in response to lipopolysaccharide (LPS) stimulation. METHODS AND RESULTS A normal rat hepatocyte cell line was preserved with University of Wisconsin (UW) solution, Ringer's lactate solution (RL), and phosphate-buffered saline (PBS) at 4 degrees C. No significant morphological alteration was noted in UW-preserved cells after 24 h through phase-contrast microscopic observation and fluorescent viability stain. Western blotting showed a two-fold increase in the ratio of HSP70/Bax proteins in cells after 24 h of UW preservation. Heat preconditioning significantly enhanced the recovery of lactate dehydrogenase (LDH) activity in both RL- and UW-preserved cells that were stored for a period of 12 h or less. Moreover, heat preconditioning promoted HSP70 and NF-kappaB p50 nuclear translocation and suppressed the LPS-induced nuclear p50 accumulation in cells before UW preservation. Immunofluorescent stain revealed that the LPS-induced p50 protein redistribution to nuclear membrane might contribute to NF-kappaB activation, while heat preconditioning and UW cold preservation completely abrogated the p50 intranuclear redistribution. Thus NF-kappaB p50 might be responsible for the endotoxin tolerance induction. CONCLUSIONS These findings strongly suggest that heat preconditioning not only preserves hepatocyte viability after cold preservation and rewarming, but also ameliorates its immunoactivity.
Collapse
Affiliation(s)
- Ying-Hsien Kao
- Liver Transplantation Program, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, 123 Ta-Pei Rd., Niao-Sung, Kaohsiung 833, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR. Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 2007; 79:386-92. [PMID: 17311328 DOI: 10.1002/jmv.20786] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, several stress-related proteins including GRP78, hsp70, and hsp90 have been implicated as dengue virus receptors in various cell types, with hsp90/70 being implicated as a receptor complex in monocytes and macrophages, while GRP78 has been implicated as a liver cell expressed dengue virus receptor. To assess whether the hsp90/70 complex plays a role in the internalization of the dengue viruses into liver cells, we undertook infection inhibition studies with lipopolysaccharide and antibodies directed against both hsp70 and hsp90, individually and in combination. No inhibition of any dengue serotype was seen in the presence of lipopolysaccharide or antibodies directed against either hsp70 or hsp90 either singly or in combination. A moderate inhibition of dengue virus serotype 2 entry into liver cells was observed in the presence of antibodies directed against GRP78. These results confirm a proposed role for GRP78 as a dengue virus serotype 2 receptor protein and suggest that the recently identified hsp90/70 complex does not play a role in dengue virus internalization into liver cells.
Collapse
Affiliation(s)
- Arturo Cabrera-Hernandez
- Molecular Pathology Laboratory, Institute of Molecular Biology and Genetics, Mahidol University, Nakorn Pathom, Thailand
| | | | | | | |
Collapse
|
11
|
Porras N, Strauss M, Rodriguez M, Anselmi G. Hsp70 accumulation and ultrastructural features of lung and liver induced by ethanol treatment with and without l-carnitine protection in rats. ACTA ACUST UNITED AC 2006; 57:227-37. [PMID: 16410189 DOI: 10.1016/j.etp.2005.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 09/01/2005] [Indexed: 01/15/2023]
Abstract
This study examined Hsp70 accumulation and the subcellular characteristics of liver and lung when exposed to ethanol (EtOH), with and without L-carnitine protection. Female Sprague-Dawley rats, 150-200 g body weight, were randomized into four groups: Control (CON), Alcohol (ALC), L-carnitine (CAR) and Alcohol-L-carnitine (ALC-CAR). EtOH was administered per os at a dose of 4 g/kg body weight (1 ml) daily for 4 weeks. Before alcohol intake, an oral dose of 500 mg/kg body weight of L-carnitine was also administered to the ALC-CAR group. The liver and lung samples were subjected to Hsp70 Western blot and ultrastructural analysis. The Hsp70 accumulation was higher in the liver than in the lung samples. Hepatic Hsp70 accumulation was similar for all groups in contrast to lung, where the Hsp70 accumulation depends on the group studied. The ultrastructural results showed lung but not liver alterations, evidencing a stressful condition and subsequent cellular injury for lung tissue but not for liver. The ALC-CAR group showed less lung damage than the non-protected group and resembles the general appearance of the CON and CAR groups. EtOH intoxication induced differential cellular response in liver and lung in a dose and tissue dependent manner. L-carnitine seems to reduce lung EtOH-induced subcellular damage. The promotion of heat shock or stress proteins might represent one of the mechanisms involved that need to be further investigated.
Collapse
Affiliation(s)
- Noraidys Porras
- Sección de Biología Celular, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Apdo: 47019, Caracas 1041-A, Venezuela
| | | | | | | |
Collapse
|
12
|
Rai R, Richardson C, Flecknell P, Robertson H, Burt A, Manas DM. Study of apoptosis and heat shock protein (HSP) expression in hepatocytes following radiofrequency ablation (RFA). J Surg Res 2005; 129:147-51. [PMID: 15975593 DOI: 10.1016/j.jss.2005.03.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/13/2005] [Accepted: 03/15/2005] [Indexed: 11/23/2022]
Abstract
BACKGROUND Radiofrequency ablation (RFA) of the liver produces necrosis of the hepatocytes. Histological examination shows a sharp demarcation between ablated and normal liver tissue. This experiment was carried out to study the cellular injury produced by RFA in area surrounding the ablated tissue and effect of reperfusion on this zone. MATERIAL AND METHODS Five pigs underwent RFA of liver parenchyma. Four pigs were sacrificed 30 min after RFA and one pig was sacrificed 5 days later. Ablated lesions including surrounding liver parenchyma was examined for apoptosis and HSP 70 expression. RESULTS There was a zone of transition surrounding the necrotic ablated area that showed apoptosis as well as increased HSP 70 expression. This was more prevalent in the pig that was sacrificed 5 days later. CONCLUSION RFA produces sub lethal injury in the zone of transition causing apoptosis and increase in HSP 70 expression. Increased HSP expression enhances immunogenicity of these cells that can have therapeutic implications for the treatment of liver.
Collapse
Affiliation(s)
- R Rai
- Department of Surgery, Russell's Hall Hospital, Dudley, UK.
| | | | | | | | | | | |
Collapse
|