Ganeyan A, Ganesh CB. Organization of the galaninergic neuronal system in the brain of the gecko Hemidactylus frenatus.
Neuropeptides 2023;
97:102310. [PMID:
36459764 DOI:
10.1016/j.npep.2022.102310]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Galanin (GAL) is a 29 amino acid peptide present in the central nervous system (CNS) as well as peripheral tissues in vertebrates. However, the brain distribution pattern of GAL is understudied in reptiles. The aim of this study was to determine the organization of galaninergic neuronal system in the brain of the gecko Hemidactylus frenatus, a tropical and sub-tropical lizard, using rabbit anti-galanin antibody. In the telencephalon, GAL-ir perikarya and fibres were found in the lateral septal nucleus, but only GAL-ir fibres were observed in the striatum, nucleus accumbens, anterior commissure, nucleus centralis amygdalae, dorsal and medial septal nuclei, nucleus of the diagonal band of Broca and in the optic chiasma. In the preoptic region, a cluster of GAL-ir cells and fibres was observed in the periventricular preoptic area and lateral preoptic area. GAL-ir perikarya and fibres were observed in hypothalamic areas such as the supraoptic nucleus, suprachiasmatic nucleus, paraventricular nucleus, periventricular nucleus of the hypothalamus, infundibular recess nucleus and in the median eminence, whereas GAL-ir fibres were present in the pars distalis of the pituitary gland. In the thalamus, GAL-ir fibres were observed in the dorsomedial, dorsolateral, and medial thalamic nuclei. GAL-ir fibres were also detected in mesencephalic areas such as the optic tectum, torus semicircularis, ventral tegmental area and substantia nigra, brain stem as well as the spinal cord. The organization of GAL-ir cells and fibres throughout the gecko brain suggests several neuroendocrine, neuromodulatory and behavioural functions for GAL in lizards. The study provides new insights into the evolutionarily conserved nature of GAL peptide in squamate reptiles and forms a valuable basis for future comparative studies.
Collapse