1
|
Qi R, Kang SS, Pei Y, Liu M, Zhou Y, Guan B, Zhang X, Li Z, Cao F. LC-MS-based untargeted metabolomics reveals the mechanism underlying prostate damage in a type 2 diabetes mouse model. Reprod Biol 2023; 23:100811. [PMID: 37660522 DOI: 10.1016/j.repbio.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Type 2 diabetes mellitus (T2DM) can cause prostate damage and affect male reproductive function, but the underlying mechanisms are not completely understood. In this study, we used liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics to identify endogenous metabolites in the prostate of a T2DM mouse model. The selected endogenous metabolites were then subjected to bioinformatics analysis and metabolic pathway studies to understand their role in the development of T2DM-induced prostate damage. We used male homozygous BTBR ob/ob mice (n = 12) and BTBR WT mice (n = 11) in this study. We monitored changes in blood glucose, body weight, prostate weight, and prostate index, as well as performed hematoxylin and eosin (H&E) staining and observed that the prostate of the BTBR ob/ob was damaged. We then used ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for metabolomics analysis. The stability of the model was validated using principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). Using variable importance in projection (VIP) > 1, false discovery rate (FDR) < 0.05, and coefficient of variation (CV) < 30 as criteria, a total of 149 differential metabolites (62 upregulated and 87 downregulated) were identified between the prostates of the two groups of mice. Topological pathway analysis showed that these differential metabolites were mainly involved in sphingolipid (SP) and glycerophospholipid (GP) metabolism. In conclusion, our study not only emphasizes the damage caused by T2DM to the prostate but also provides new insights into the potential mechanisms of T2DM-induced male reproductive dysfunction.
Collapse
Affiliation(s)
- Rong Qi
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Shao-San Kang
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Yongchao Pei
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China
| | - Mingming Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Yufan Zhou
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Bo Guan
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xinduo Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiguo Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Fenghong Cao
- Clinical Medical College, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
2
|
Pathological lesions and global DNA methylation in rat prostate under streptozotocin-induced diabetes and melatonin supplementation. Cell Biol Int 2018; 42:470-487. [DOI: 10.1002/cbin.10920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
|
3
|
Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 2017; 24:86-105. [DOI: 10.1093/humupd/dmx033] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Constanze C Maresch
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Dina C Stute
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - David M de Kretser
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
4
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|
5
|
Hashem HE, Abd El-Haleem MR, Abass MA. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell 2015; 47:366-72. [DOI: 10.1016/j.tice.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
6
|
Gobbo MG, Dizeyi N, Abrahamsson PA, Bertilsson PA, Masitéli VS, Pytlowanciv EZ, Taboga SR, Góes RM. Influence of Melatonin on the Proliferative and Apoptotic Responses of the Prostate under Normal and Hyperglycemic Conditions. J Diabetes Res 2015; 2015:538529. [PMID: 26295055 PMCID: PMC4534615 DOI: 10.1155/2015/538529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/23/2023] Open
Abstract
The antitumor properties of melatonin (MLT) are known for prostate cancer cells. This study investigated whether MLT affects prostate maturation and interferes with tissue injuries induced by diabetes. MLT was administered to Wistar rats from 5 weeks of age in the drinking water (10 μg/kg b.w.), and diabetes was induced at the 13th week by streptozotocin (4.5 mg/100g b.w., i.p.). The animals were euthanized in the 14th and 21st weeks. MLT reduced the immunostained cells for androgen receptor (AR) by 10% in younger rats. Diabetes decreased cell proliferation and increased apoptosis. MLT treatment impeded apoptosis (p = 0.02) and augmented proliferation (p = 0.0008) and PCNA content in prostate following long-term diabetes due to restoration of testosterone levels and expression of melatonin receptor type 1B. The effect of MLT (500 µM, 5 mM, and 10 mM) on androgen-dependent (22Rv1) and androgen-independent (PC3) cancer cells and human prostate epithelial cells (PNTA1) under normal and hyperglycemic conditions (HG, 450 mg/dL) was analyzed. Contrary to PNTA1 and 22Rv1 cells, MLT improved the proliferation of PC3 cells in hyperglycemic medium. The combined data indicated that MLT had proliferative and antiapoptotic effects in prostate cells subjected to HG levels and it seems to involve specific MLT pathways rather than AR.
Collapse
Affiliation(s)
- Marina G. Gobbo
- Department of Cell Biology, Institute of Biology, UNICAMP, Avenue Bertrand Russel, 6109 Campinas, SP, Brazil
| | - Nishtman Dizeyi
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Per-Anders Abrahamsson
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Per-Anders Bertilsson
- Department of Clinical Sciences, Division of Urological Research, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| | - Viviane Sanches Masitéli
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Eloisa Zanin Pytlowanciv
- Department of Cell Biology, Institute of Biology, UNICAMP, Avenue Bertrand Russel, 6109 Campinas, SP, Brazil
| | - Sebastião R. Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Rejane M. Góes
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| |
Collapse
|
7
|
Influence of insulin and testosterone on diabetic rat ventral prostate: Histological, morphometric and immunohistochemical study. J Microsc Ultrastruct 2014. [DOI: 10.1016/j.jmau.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Short-term stromal alterations in the rat ventral prostate following alloxan-induced diabetes and the influence of insulin replacement. Micron 2011; 43:326-33. [PMID: 22014851 DOI: 10.1016/j.micron.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 12/18/2022]
Abstract
The stromal microenvironment is pivotal to prostate physiology and malign transformation. Diabetes leads to testosterone withdrawal and affects the prostate stromal compartment and smooth muscle cells in a similar way to that observed after castration. However the response of these cells and their involvement in extracellular matrix remodeling is not satisfactorily understood. We investigated the changes caused in the short term (one week) by alloxan-induced diabetes in the stromal components of the rat ventral prostate (VP) with an emphasis on morphological alterations of stromal cells, their conversion to a myofibroblast phenotype and the remodeling of extracellular matrix and the influence of insulin therapy. Adult male Wistar rats were assigned into untreated diabetic (n=12), insulin-treated (n=8) diabetic and control (n=10) groups. Diabetes was induced by means of the injection of alloxan (40 mg/kg b.w.), while the control animals received saline solution only. Insulin (5 UI) was administered daily for one week after diabetes diagnosis. Testosterone and estrogen plasma levels were determined. VP was analyzed using transmission electron microscopy. The main stromal cells were identified by means of light microscopy, using immunocytochemistry for specific markers - vimentin for fibroblasts, α-actin for smooth muscle cells (smc) and vimentin/calponin for myofibroblasts, following the estimation of their relative frequency and absolute volume by means of stereology. After one week diabetes led to a marked decrease in testosterone levels and an atrophy of about 35% in the VP. The relative frequency of smc and collagen fibers increased in the VP of diabetic rats but their absolute weight remained unchanged. Experimental diabetes promptly altered smc morphology which assumed at the ultrastructural level a shrunken appearance with the approximation of cytoplasmic dense bodies and also exhibited a decreased immunoreactivity to calponin. The conversion of stromal cells to a myofibroblast phenotype did not occur in alloxan-induced diabetes, as evaluated by double immunoreaction to calponin and vimentin. Insulin treatment maintained testosterone levels and preserved at least partly the cell morphology and collagen fiber organization of the prostate stroma in short-term diabetes. The apparent collagen increase observed by means of microscopic analysis in the stromal prostate compartment in the short term after diabetes is mainly associated with gland atrophy and does not involve the formation of new collagen fibers, the generation of myofibroblast-like cells or the acquisition of a secretory phenotype by stromal cells.
Collapse
|
9
|
Diabetes causes multiple genetic alterations and downregulates expression of DNA repair genes in the prostate. J Transl Med 2011; 91:1363-74. [PMID: 21647090 DOI: 10.1038/labinvest.2011.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The molecular impact of diabetes mellitus on prostate gland has not been elucidated. In this study, we performed a whole-genome cDNA microarray analysis using a streptozotocin-induced diabetic rat model to identify the effects of diabetes on the gene expression profiles in prostate. Our study shows that diabetes causes changes in the expression of multiple genes, particularly those related to cell proliferation and differentiation, oxidative stress, DNA damage repair, cell cycle checkpoints, angiogenesis and apoptosis. These findings were confirmed by real-time polymerase chain reaction and immunohistochemical staining using rat and human prostate tissue. We also used a cell culture model (human normal prostatic RWPE-1 cell line) to study the direct effect of high glucose. We found that high glucose caused increased intracellular oxidative stress and DNA damage, as well as downregulation of anti-oxidative enzymes and DNA damage repair genes MRE11 and XRCC3. Our findings provide important insights into understanding the pathogenesis of the diabetes-induced changes in prostate as well as identifying potential therapeutic targets for future studies.
Collapse
|
10
|
Porto EM, Santos SADAD, Ribeiro LM, Lacorte LM, Rinaldi JC, Justulin LA, Felisbino SL. Lobe variation effects of experimental diabetes and insulin replacement on rat prostate. Microsc Res Tech 2011; 74:1040-8. [DOI: 10.1002/jemt.20991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/30/2010] [Indexed: 01/01/2023]
|
11
|
Vikram A, Kushwaha S, Jena GB. Relative influence of testosterone and insulin in the regulation of prostatic cell proliferation and growth. Steroids 2011; 76:416-23. [PMID: 21215763 DOI: 10.1016/j.steroids.2010.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/22/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Prostatic hyperplasia is a common problem of the aged men population. Recent experimental and clinical studies provide sufficient evidence that apart from androgens, insulin also plays an important role in the pathogenesis of prostatic hyperplasia. The present study was aimed to investigate the relative influence of testosterone and insulin on the cellular proliferation and prostatic growth. Effect of testosterone on the prostate of hypoinsulinemic, and glandular injection of insulin-receptor antagonist S961 on the prostate of castrated Sprague-Dawley rat (220±10 g) was examined. Significant decrease in the weight of the ventral prostate was observed in the streptozotocin-induced hypoinsulinemic rats (~6 fold), which is restored by the intervention of testosterone. Although, glandular injection of S961 did not led to any change in the frequency of proliferating cell nuclear antigen (PCNA) positive cells in normal rats, significant decrease was observed in the castrated rats. Castration led to increase in the frequency of the caspase-3 and the TUNEL positive cells in the ventral prostate. Further, long-term (6 weeks) administration of S961 induced significant decrease in the weight of the ventral prostate. Results of the present study provide that both testosterone and insulin promote prostatic cell proliferation and change in the level of either of the hormone results in the destabilization of cellular equilibrium, and modulation of the insulin-receptor signaling in the prostate may provide an alternative strategy for the treatment of prostatic enlargement. Further, studies are required to better understand the interplay between these hormones in the regulation of prostatic growth.
Collapse
Affiliation(s)
- A Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160062, India.
| | | | | |
Collapse
|
12
|
Vikram A, Jena G. Role of insulin and testosterone in prostatic growth: who is doing what? Med Hypotheses 2010; 76:474-8. [PMID: 21159446 DOI: 10.1016/j.mehy.2010.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/04/2010] [Accepted: 11/21/2010] [Indexed: 11/29/2022]
Abstract
Previous studies have demonstrated increased incidence of benign prostatic hyperplasia in insulin-resistant individuals. In addition to androgens, prostatic growth is sensitive to the peptide growth factors including insulin. Experimental studies employing intervention of selective β-cell toxin streptozotocin and castration suggest that depletion of either insulin or testosterone results in the severe prostatic atrophy (>80%). Exogenous testosterone and diet-induced experimental hyperinsulinemia induces prostatic enlargement in rats. Further, hyperinsulinemia sensitizes prostate towards the growth promoting effect of testosterone, and testosterone augments prostatic growth even in the hypoinsulinemic rats. However, in castrated rats diet-induced hyperinsulinemia fails to promote prostatic growth. Based on these evidences it is hypothesized that in the presence of testosterone insulin plays an important role in the prostatic growth. The epidemiological reports witnessing increased incidences of prostatic enlargement in men with metabolic syndrome, which are known to have increased level of insulin, provides a validating clue to the hypothesis. Further, the hypothesis suggests that targeting insulin signaling pathway could be a new objective for the treatment of prostatic enlargement.
Collapse
Affiliation(s)
- Ajit Vikram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab 160062, India.
| | | |
Collapse
|
13
|
Fávaro WJ, Cagnon VHA. Effect of combined hormonal and insulin therapy on the steroid hormone receptors and growth factors signalling in diabetic mice prostate. Int J Exp Pathol 2010; 91:537-45. [PMID: 21039986 DOI: 10.1111/j.1365-2613.2010.00739.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Diabetes causes harmful effects on prostatic morphology and function. However, there still are doubts about the occurrence of various diseases in the prostate, as well as abnormal angiogenesis in relation to diabetes. Thus, the aim of this study was to correlate and quantify the level of the steroid hormone receptors and the angiogenic and antiangiogenic factors in non-obese diabetic mice (Nod) after combined hormonal and insulin therapy. Sixty mice were divided into six groups after 20 days of diabetes: the control group received 0.9% NaCl, as did the diabetic group. The diabetic-insulin group received insulin, the diabetic-testosterone group received testosterone cypionate, the diabetic-oestrogen group received 17β-oestradiol, and the diabetic-insulin-testosterone-oestrogen group received insulin, testosterone and oestrogen simultaneously. After 20 days, the ventral lobe was processed for immunocytochemical and hormonal analyses. The results showed that the lowest serum testosterone and androgen receptor levels were found in the diabetic group and the highest testosterone and androgen receptor levels in the diabetic-insulin-testosterone-oestrogen group. The serum oestrogen level and its receptor showed changes opposite to those of testosterone and its receptor. The endostatin reactivity was mainly decreased in diabetic mice. The greatest IGFR-1 and VEGF reactivities occurred in diabetic mice. Thus, diabetes led to the prostatic hormonal imbalance, affecting molecular dynamics and angiogenesis in this organ. Combined insulin and steroid hormone therapy partially restored the hormonal and angiogenic imbalance caused by diabetes.
Collapse
Affiliation(s)
- Wagner J Fávaro
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
14
|
Pinto LC, Fávaro WJ, Cagnon VHA. Proliferative, structural and molecular features of the Mdx mouse prostate. Int J Exp Pathol 2010; 91:408-19. [PMID: 20618884 DOI: 10.1111/j.1365-2613.2010.00722.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The prostate is fundamental to the male reproductive process, and the stroma-epithelium interaction has an important role in prostate maintenance. Studies suggest that dystroglycan (DG) plays a role in cancer development in various organs. Thus, the aims of this work were to characterize morphological and proliferative features of the prostatic stroma and epithelium of mdx mice; to verify the immunolocalization of the α and β DG, IGF-1 and laminin α3 receptors; and to relate those structural and molecular events to prostate pathogenesis and to verify the viability of this experimental model in prostate studies. Thirty male mice (mdx and C57BL10/Uni) were divided into control and mdx groups. Samples from the ventral prostate were collected for immunological, Western Blotting, transmission electron microscopy and morphometric analyses. Oestradiol and testosterone measurements were verified. The results showed diminished testosterone and increased oestradiol levels in the mdx group. Atrophied cells and hypertrophied stroma were seen in the mdx mice. Weak α and β DG and laminin α3 immunolocalization was demonstrated in the mdx group. Intense insulin-like growth factor receptor α-1 (IGFRα-1) localization was identified in the mdx animals. Thus, mdx animals showed changes in molecular and structural integrity and proliferation signals, leading to glandular homoeostasis imbalance, and compromise of prostate function. Also, the steroid hormone imbalance and the increased IGF-1 receptor level detected in mdx mice could be considered as a crucial factor in the pathogenesis of prostatic disorders.
Collapse
Affiliation(s)
- Leslie C Pinto
- Department of Anatomy, Cell Biology, Physiology and Biophysic, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | |
Collapse
|
15
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:293-312. [PMID: 20418721 DOI: 10.1097/med.0b013e328339f31e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Arcolino FO, Ribeiro DL, Gobbo MG, Taboga SR, Góes RM. Proliferation and apoptotic rates and increased frequency of p63-positive cells in the prostate acinar epithelium of alloxan-induced diabetic rats. Int J Exp Pathol 2009; 91:144-54. [PMID: 20041964 DOI: 10.1111/j.1365-2613.2009.00696.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The effects of experimental type 1 diabetes were investigated in the acinar epithelium of rat ventral prostate, focusing on the rates of cell proliferation and the frequency of apoptosis and p63-positive cells. Type 1 diabetes was induced in adult male Wistar rats by a single alloxan administration (42 mg/kg b.w.) and its effects were analysed for 1 week and 3 months after the establishment of the disease. A group of diabetic rats was treated daily with 5 IU of insulin during 1 week after diabetes had been diagnosed. Immunocytochemical methods for the localization of cell proliferation antigen (PCNA), androgen receptor (AR) and p63 protein were carried out, and apoptotic cells were identified by TUNEL essay. In diabetic rats, testosterone levels reduced drastically after 1 week and in a lower degree after 3 months. In short-term diabetic rats, cell proliferation decreased, and in medium-term, epithelial apoptotic rates increased. In both periods after the onset of diabetes, the frequency of p63-positive cells doubled. Insulin treatment was effective in preventing testosterone decrease, p63-positive cell increase and apoptotic rates, but did not interfere in cell proliferation. This investigation shows that, soon after diabetes onset, there are important modifications in cell proliferation within the acinar prostatic epithelium, and in longer term, there is a marked impact on kinetics of differentiation and cell death, which may initially be attributable to an androgenic fall, but is probably also because of other factors related to diabetes, as changes are considerably different from those resulting from castration.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University-Unesp, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|