1
|
Bogolyubova IO, Sailau ZK, Bogolyubov DS. Nuclear Distribution of the Chromatin-Remodeling Protein ATRX in Mouse Early Embryos during Normal Development and Developmental Arrest In Vitro. Life (Basel) 2023; 14:5. [PMID: 38276254 PMCID: PMC10817635 DOI: 10.3390/life14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The chromatin-remodeling protein ATRX, which is currently recognized as one of the key genome caretakers, plays an important role in oogenesis and early embryogenesis in mammals. ATRX distribution in the nuclei of mouse embryos developing in vivo and in vitro, including when the embryos are arrested at the two-cell stage-the so-called two-cell block in vitro-was studied using immunofluorescent labeling and FISH. In normally developing two- and four-cell embryos, ATRX was found to be closely colocalized with pericentromeric DNA sequences detected with a probe to the mouse major satellite DNA. The association of ATRX with pericentromeric heterochromatin is mediated by nuclear actin and reduced after the treatment of embryos with latrunculin B. When culturing embryos in vitro, the distribution pattern of ATRX changes, leading to a decrease in the association of this protein with major satellite DNA especially under the two-cell block in vitro. Taken together, our data suggest that the intranuclear distribution of ATRX reflects the viability of mouse embryos and their probability of successful preimplantation development.
Collapse
Affiliation(s)
- Irina O. Bogolyubova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| | - Zhuldyz K. Sailau
- PERSONA International Clinical Center for Reproductology, Almaty 050060, Kazakhstan;
| | - Dmitry S. Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| |
Collapse
|
2
|
Lavrentyeva E, Shishova K, Kagarlitsky G, Zatsepina O. Localisation of RNAs and proteins in nucleolar precursor bodies of early mouse embryos. Reprod Fertil Dev 2017; 29:509-520. [PMID: 26376167 DOI: 10.1071/rd15200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/13/2015] [Indexed: 11/23/2022] Open
Abstract
Early embryos of all mammalian species contain morphologically distinct but transcriptionally silent nucleoli called the nucleolar precursor bodies (NPBs), which, unlike normal nucleoli, have been poorly studied at the biochemical level. To bridge this gap, here we examined the occurrence of RNA and proteins in early mouse embryos with two fluorochromes - an RNA-binding dye pyronin Y (PY) and the protein-binding dye fluorescein-5'-isothiocyanate (FITC). The staining patterns of zygotic NPBs were then compared with those of nucleolus-like bodies (NLBs) in fully grown surrounded nucleolus (SN)-type oocytes, which are morphologically similar to NPBs. We show that both entities contain proteins, but unlike NLBs, NPBs are significantly impoverished for RNA. Detectable amounts of RNA appear on the NPB surface only after resumption of rDNA transcription and includes pre-rRNAs and 28S rRNA as evidenced by fluorescence in situ hybridisation with specific oligonucleotide probes. Immunocytochemical assays demonstrate that zygotic NPBs contain rRNA processing factors fibrillarin, nucleophosmin and nucleolin, while UBF (the RNA polymerase I transcription factor) and ribosomal proteins RPL26 and RPS10 are not detectable. Based on the results obtained and data in the contemporary literature, we suggest a scheme of NPB assembly and maturation to normal nucleoli that assumes utilisation of maternally derived nucleolar proteins but of nascent rRNAs.
Collapse
Affiliation(s)
- Elena Lavrentyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - Kseniya Shishova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - German Kagarlitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| | - Olga Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
3
|
Zhang Y, Jiang Y, Lian X, Xu S, Wei J, Chu C, Wang S. Effects of ERα-specific antagonist on mouse preimplantation embryo development and zygotic genome activation. J Steroid Biochem Mol Biol 2015; 145:13-20. [PMID: 25263659 DOI: 10.1016/j.jsbmb.2014.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 09/05/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Zygotic genome activation (ZGA) is essential for normal development of mammalian preimplantation embryos. Estrogen receptor alpha (ERα) has been implicated in early embryogenesis, and controls the expression of genes associated with proliferation, differentiation and development of cell and target organs via a genomic effect. The objective of this study was to determine whether ERα plays a role in early embryo development and affects ZGA gene expression. Toward this objective, 1-cell embryos from B6C3F1 mouse were cultured with the antiestrogen ICI182780, ERα-specific antagonist MPP, ERα-specific antibody and ERβ-specific antagonist PHTPP. Development of 2-cell to 4-cell in vitro was significantly blocked by ICI182780, MPP and ERα-antibody treatment in a dose-dependent manner but not affected by PHTPP exposure. MPP decreased nuclear ERα protein levels and reduced mRNA expression levels of MuERV-L, one of the ZGA related genes. The results indicate that ERα has a functional role in early embryo development by regulation of ZGA-related genes.
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Yufei Jiang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China; Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Chenfeng Chu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China; Cellular and Developmental Engineering Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
4
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
5
|
An immunocytochemical study of interchromatin granule clusters in early mouse embryos. BIOMED RESEARCH INTERNATIONAL 2013; 2013:931564. [PMID: 24106723 PMCID: PMC3784238 DOI: 10.1155/2013/931564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022]
Abstract
Interchromatin granule clusters (IGCs) are universal nuclear domains. Their molecular composition and functions were studied in detail in somatic cells. Here, we studied IGCs in the nuclei of early mouse embryos during zygotic gene activation (ZGA). We found that the size of IGCs gradually increases during realization of ZGA events. Using immunocytochemical approaches, we showed that the molecular composition of IGCs is also modified in mouse embryos. The hyperphosphorylated form of RNA polymerase II and the transcription factor TFIID have been revealed in IGCs before the end of ZGA. Association of these factors with IGCs became more noticeable during ZGA realization. Our data suggest that IGCs in early mouse embryos have some functional peculiarities connected most probably with IGC formation de novo. We believe that IGCs in early mouse embryos not only are storage sites of splicing factors but also may be involved in mRNA metabolism and represent the multifunctional nuclear domains.
Collapse
|
6
|
Bogolyubova I, Stein G, Bogolyubov D. FRET analysis of interactions between actin and exon-exon-junction complex proteins in early mouse embryos. Cell Tissue Res 2012; 352:277-85. [DOI: 10.1007/s00441-012-1545-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022]
|