1
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Kumar V, Kumar N, Gangwar AK, Singh R. Comparative evaluation of two different xenogenic acellular matrices on full-thickness skin wound healing. J Wound Care 2024; 33:lxxiv-lxxx. [PMID: 38457271 DOI: 10.12968/jowc.2024.33.sup3a.lxxiv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The purpose of the study was to compare the healing potential of bubaline small intestinal matrix (bSIM) and fish swim bladder matrix (FSBM) on full-thickness skin wounds in rabbits. METHOD Four full-thickness skin wounds (each 20×20mm) were created on the dorsum of 18 rabbits that were divided into three groups based on treatment: untreated sham control (I), implanted with double layers of bSIM (II) and implanted with double layers of FSBM (III). Macroscopic, immunologic and histologic observations were made to evaluate wound healing. RESULTS Gross healing progression in the bSIM and FSBM groups showed significantly (p<0.05) less wound contraction compared with the sham group. The IgG concentration in rabbit sera was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by enzyme-linked immunosorbent assay. The stimulation index of peripheral blood lymphocytes was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Implantation of FSBM resulted in improved re-epithelialisation, neovascularisation and fibroplasia. CONCLUSION The FSBM is a more effective dermal substitute when compared with the bSIM for full-thickness skin wound repair in rabbit.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj-855107, Bihar, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anil K Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Mansour RN, Hasanzadeh E, Abasi M, Gholipourmalekabadi M, Mellati A, Enderami SE. The Effect of Fetal Bovine Acellular Dermal Matrix Seeded with Wharton's Jelly Mesenchymal Stem Cells for Healing Full-Thickness Skin Wounds. Genes (Basel) 2023; 14:genes14040909. [PMID: 37107668 PMCID: PMC10138153 DOI: 10.3390/genes14040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The treatment of full-thickness skin wounds is a problem in the clinical setting, as they do not heal spontaneously. Extensive pain at the donor site and a lack of skin grafts limit autogenic and allogeneic skin graft availability. We evaluated fetal bovine acellular dermal matrix (FADM) in combination with human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) to heal full-thickness skin wounds. FADM was prepared from a 6-month-old trauma-aborted fetus. WJ-MSCs were derived from a human umbilical cord and seeded on the FADM. Rat models of full-thickness wounds were created and divided into three groups: control (no treatment), FADM, and FADM-WJMSCs groups. Wound treatment was evaluated microscopically and histologically on days 7, 14, and 21 post-surgery. The prepared FADM was porous and decellularized with a normal range of residual DNA. WJ-MSCs were seeded and proliferated on FADM effectively. The highest wound closure rate was observed in the FADM-WJMSC group on days 7 and 14 post-surgery. Furthermore, this group had fewer inflammatory cells than other groups. Finally, in this study, we observed that, without using the differential cell culture media of fibroblasts, the xenogeneic hWJSCs in combination with FADM could promote an increased rate of full-thickness skin wound closure with less inflammation.
Collapse
Affiliation(s)
- Reyhaneh Nassiri Mansour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| |
Collapse
|
4
|
Sachan AK, Gangwar AK, Khangembam SD, Kumar N. Characterization of Glutaraldehyde Crosslinked Decellularized Caprine Gall Bladder Scaffolds Prepared Using Sapindus mukorossi Fruit Pericarp Extract. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Song L, Luo X, Tsauo C, Shi B, Liu R, Li C. Histologic characterization of orbicularis oris muscle with a new acellular dermal matrix grafts in a rabbit model. J Tissue Eng Regen Med 2022; 16:707-717. [PMID: 35524474 DOI: 10.1002/term.3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/07/2022]
Abstract
Muscular dysplasia is the key factor in influencing surgical outcomes in patients with cleft lip/palate. In this research, we attempted to evaluate a new acellular dermal matrix (ADM) as a substitute for reconstruction of the orbicularis oris muscle with growth factors such as Insulin-Like Growth Factor I (IGF-I), vascular endothelial growth factor (VEGF) in a rabbit model. 30 male New Zealand Rabbits (2-3 m, 1700-2000 g) were divided into four groups as follows; a group in which the orbicularis oris muscle of the upper lip was implanted with ADM, a group in which the orbicularis oris muscle of the upper lip was implanted with ADM + IGF-I + VEGF, a group in which the upper lip was operated without implantation of an ADM scaffold, and a normal upper lip for comparison. Macroscopic observation, histological evaluation, and immunohistochemistry were employed to evaluate levels of the muscle regeneration, vascularization, and inflammation at 1, 2, 4, 6, and 12 weeks after the operation. All wounds healed well without infection, immune rejection and so on. Histological evaluation showed that ADM was totally degraded and replaced by connective tissue. The area in which the ADM scaffold was coated with growth factors show a significant increase in the formation of new myofibers after injury, and the vascularization improved compared to the control group and the normal group. In regard to the degrees of inflammation, there were no notable differences among the groups. In conclusion, Our study indicated that ADM grafts combined with IGF-I and VEGF have potential advantages in alleviating muscular dysplasia in cleft lip treatment.
Collapse
Affiliation(s)
- Lei Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.,Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Renkai Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Goyal RP, Gangwar AK, Khangembam SD, Yadav VK, Kumar R, Verma RK, Kumar N. Decellularization of caprine esophagus using fruit pericarp extract of Sapindus mukorossi. Cell Tissue Bank 2021; 23:79-92. [PMID: 33768473 DOI: 10.1007/s10561-021-09916-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.
Collapse
Affiliation(s)
- Ravi Prakash Goyal
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Anil Kumar Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India.
| | - Sangeeta Devi Khangembam
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Vipin Kumar Yadav
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Rabindra Kumar
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Rajesh Kumar Verma
- Department of Veterinary Clinical Complex, College of Veterinary Science and Animal Husbandry, Acharya Narendra Dev University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, 224 229, India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India
| |
Collapse
|
7
|
Goyal RP, Khangembam SD, Gangwar AK, Verma MK, Kumar N, Ahmed P, Yadav VK, Singh Y, Verma RK. Development of decellularized aortic scaffold for regenerative medicine using Sapindus mukorossi fruit pericarp extract. Micron 2020; 142:102997. [PMID: 33388519 DOI: 10.1016/j.micron.2020.102997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
The aim of this study is to develop a novel decellularization method using aqueous extract of soap nut pericarp (SPE) and its evaluation using hematoxylin-eosin staining, scanning electron microscopy, diamidino-2-phenylindol (DAPI) staining, mechanical testing, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DNA quantification. The presently available decellularization agent raises some concerns due to the potential for presence of residual cytotoxic agents in the extracellular matrix. Histological analysis of hematoxylin and eosin and masson's trichrome stained processed aortic samples shows complete decellularization with preservation of extracellular matrix microarchitecture at 120 h. Further, staining of tissue samples with DAPI demonstrates complete removal of DNA fragments. Quantitative evaluation of DNA in the decellularized aorta tissues demonstrated a significant (P < 0.01) decrease in DNA content as compared to native tissues. Collagen quantification assay indicate no significant (P> 0.05) difference in its content between native and decellularized caprine aorta. Tensile strength of the decellularized scaffolds decreased non-significantly (P > 0.05) when compared to native tissues. There was no significant (P > 0.05) difference in young's modulus of elasticity, stiffness and stretch ratio between native aortic tissues and decellularized aortic scaffolds. Histological and scanning electron microscopic examination of in vitro cultured scaffold demonstrated the cell viability and proliferation of primary chicken embryo fibroblasts. SPE treatment is thus capable of producing cytocompatible decellularized caprine aorta scaffold with preservation of extracellular matrix architecture for vascular tissue engineering and could be applied widely as one of the decellularization agent.
Collapse
Affiliation(s)
- Ravi Prakash Goyal
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Sangeeta Devi Khangembam
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Anil Kumar Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India.
| | - Mahesh Kumar Verma
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Naveen Kumar
- Principal Scientist, Division of Surgery, I.V.R.I., Izatnagar UP, India
| | - Parvez Ahmed
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Vipin Kumar Yadav
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Yogendra Singh
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| | - Rajesh Kumar Verma
- Department of Veterinary Clinical Complex (Veterinary Microbiology), College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya UP, 224 229, India
| |
Collapse
|
8
|
Asodiya FA, Kumar V, Vora SD, Singh VK, Fefar DT, Gajera HP. Preparation, characterization, and xenotransplantation of the caprine acellular dermal matrix. Xenotransplantation 2019; 27:e12572. [PMID: 31769102 DOI: 10.1111/xen.12572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Caprine skin is a promising biomaterial for tissue-engineering applications. However, tissue processing is required before its xenogenic use. AIMS Therefore, the purpose of this study was to evaluate the structural integrity and biocompatibility of the caprine skin after de-epithelialization, using sodium chloride (NaCl) and trypsin solutions, followed by de-cellularization using sodium dodecyl sulfate (SDS) solution. MATERIALS & METHODS The caprine skin was de-epithelialized using NaCl (2-4 mol/L) and trypsin (0.25%-0.5%) followed by the treatment of SDS (1%-4%) solution over a period of time. Acellularity of the prepared matrix was confirmed histologically and characterized by appropriate staining, scanning electron microscopy (SEM), DNA quantification, and Fourier-transform infrared (FTIR) spectroscopy. The caprine acellular dermal matrix (CADM) was used for the repair of spontaneously occurring abdominal hernia in ten buffaloes. The biocompatibility of the CADM was evaluated using clinical, hematological, biochemical, and anti-oxidant parameters. RESULTS Histologically, the skin treated with 0.25% trypsin in 4 mol/L NaCl for 8 hours resulted in complete de-epithelialization. Further treatment with 2% SDS for 48 hours demonstrated complete acellularity and orderly arranged collagen fibers. The SEM confirmed a preservation of collagen arrangement within CADM. The DNA content was significantly (P < .05) lower in CADM (46.20 ± 7.94 ng/mg) as compared to fresh skin (662.56 ± 156.11 ng/mg) indicating effective acellularity. The FTIR spectra showed characteristic collagen peaks of amide A, amide B, amide I, amide II, and amide III in CADM. All the 10 animals recovered uneventfully and remained sound. Hematological, biochemical, and anti-oxidants findings were unremarkable. CONCLUSION Results indicated the acceptance and biocompatibility of the xenogenic caprine acellular dermal matrix for abdominal hernia repair in buffaloes without complications.
Collapse
Affiliation(s)
- Foram A Asodiya
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, India
| | - Vineet Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, India
| | - Shruti D Vora
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, India
| | - Vivek K Singh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, India
| | - Dhaval T Fefar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Junagadh Agricultural University, Junagadh, India
| | - Harsukh P Gajera
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, India
| |
Collapse
|
9
|
Bubaline Aortic Matrix: Histologic, Imaging, Fourier Transform Infrared Spectroscopic Characterization and Application into Cattle Abdominal Hernia Repair. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40011-019-01094-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Zhou C, Huang Z, Huang Y, Wang B, Yang P, Fan Y, Hou A, Yang B, Zhao Z, Quan G, Pan X, Wu C. In situ gelation of rhEGF-containing liquid crystalline precursor with good cargo stability and system mechanical properties: a novel delivery system for chronic wounds treatment. Biomater Sci 2019; 7:995-1010. [PMID: 30603758 DOI: 10.1039/c8bm01196f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The objective of this study was to develop a novel delivery system for recombinant human epidermal growth factor (rhEGF) for chronic wound treatment. Such a delivery system should be of good cargo stability and system mechanical properties in order to guarantee a satisfactory wound-healing effect. rhEGF-containing lyotropic liquid crystalline precursors (rhEGF-LLCPs) with in situ gelation capability were considered as a promising candidate to achieve this aim. Various properties of the optimal formulations (rhEGF-LLCP1 and rhEGF-LLCP2) were characterized, including apparent viscosity, gelation time, in vitro release and phase behavior. The stability of rhEGF and system mechanical properties (i.e. mechanical rigidity and bioadhesive force) were verified. Interestingly, rhEGF-LLCP2 with a larger internal water channel diameter exhibited faster release rate in vitro and then better bioactivity in Balb/c 3T3 and HaCaT cell models. Moreover, rhEGF-LLCP2 showed distinct promotion effects on wound closure, inflammatory recovery and re-epithelization process in Sprague-Dawley rat models. In conclusion, rhEGF-LLCP emerged as a prospective candidate to preserve the stability and enhance the wound-healing effect of rhEGF, which might serve as a new delivery system for chronic wound therapies.
Collapse
Affiliation(s)
- Chan Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kruse CR, Sakthivel D, Sinha I, Helm D, Sørensen JA, Eriksson E, Nuutila K. Evaluation of the efficacy of cell and micrograft transplantation for full-thickness wound healing. J Surg Res 2018; 227:35-43. [PMID: 29804860 DOI: 10.1016/j.jss.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin grafting is the current standard of care in the treatment of full-thickness burns and other wounds. It is sometimes associated with substantial problems, such as poor quality of the healed skin, scarring, and lack of donor-site skin in large burns. To overcome these problems, alternative techniques that could provide larger expansion of a skin graft have been introduced over the years. Particularly, different cell therapies and methods to further expand skin grafts to minimize the need for donor skin have been attempted. The purpose of this study was to objectively evaluate the efficacy of cell and micrograft transplantation in the healing of full-thickness wounds. MATERIALS AND METHODS Allogeneic cultured keratinocytes and fibroblasts, separately and together, as well as autologous and allogeneic skin micrografts were transplanted to full-thickness rat wounds, and healing was studied over time. In addition, wound fluid was collected, and the level of various cytokines and growth factors in the wound after transplantation was measured. RESULTS Our results showed that both autologous and allogeneic micrografts were efficient treatment modalities for full-thickness wound healing. Allogeneic skin cell transplantation did not result in wound closure, and no viable cells were found in the wound 10 d after transplantation. CONCLUSIONS Our study demonstrated that allogeneic micrografting is a possible treatment modality for full-thickness wound healing. The allografts stayed viable in the wound and contributed to both re-epithelialization and formation of dermis, whereas allogeneic skin cell transplantation did not result in wound closure.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Douglas Helm
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | | | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Peng G, Liu H, Fan Y. Biomaterial Scaffolds for Reproductive Tissue Engineering. Ann Biomed Eng 2016; 45:1592-1607. [PMID: 28004214 DOI: 10.1007/s10439-016-1779-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/16/2016] [Indexed: 01/23/2023]
Abstract
The reproductive system usually involves gamete producing gonads, a series of specialized ducts, accessory glands and the external genitalia. Despite there are many traditional methods such as hormonal and surgical approaches, at present no effective treatments exist to help patients suffering from serious diseases of reproductive system, including congenital and acquired abnormalities, malignant tumor, traumatic, infectious etiologies, inflammation and iatrogenic injuries. Tissue engineering holds promise for reproductive medicine through the development of biological alternative. Till now, a diverse range of biomaterials have been utilized as suitable substrates to match both the mechanical and biological context of reproductive tissues. The current review will focus mainly on the applications of biomaterial scaffolds and their major achievements in each region of reproductive systems.
Collapse
Affiliation(s)
- Ge Peng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing, 100191, People's Republic of China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing, 100191, People's Republic of China.
- National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China.
| |
Collapse
|
13
|
Shakya P, Sharma AK, Kumar N, Vellachi R, Mathew DD, Dubey P, Singh K, Shrivastava S, Shrivastava S, Maiti SK, Hasan A, Singh KP. Bubaline Cholecyst Derived Extracellular Matrix for Reconstruction of Full Thickness Skin Wounds in Rats. SCIENTIFICA 2016; 2016:2638371. [PMID: 27127678 PMCID: PMC4835655 DOI: 10.1155/2016/2638371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/06/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
An acellular cholecyst derived extracellular matrix (b-CEM) of bubaline origin was prepared using anionic biological detergent. Healing potential of b-CEM was compared with commercially available collagen sheet (b-CS) and open wound (C) in full thickness skin wounds in rats. Thirty-six clinically healthy adult Sprague Dawley rats of either sex were randomly divided into three equal groups. Under general anesthesia, a full thickness skin wound (20 × 20 mm(2)) was created on the dorsum of each rat. The defect in group I was kept as open wound and was taken as control. In group II, the defect was repaired with commercially available collagen sheet (b-CS). In group III, the defect was repaired with cholecyst derived extracellular matrix of bovine origin (b-CEM). Planimetry, wound contracture, and immunological and histological observations were carried out to evaluate healing process. Significantly (P < 0.05) increased wound contraction was observed in b-CEM (III) as compared to control (I) and b-CS (II) on day 21. Histologically, improved epithelization, neovascularization, fibroplasia, and best arranged collagen fibers were observed in b-CEM (III) as early as on postimplantation day 21. These findings indicate that b-CEM have potential for biomedical applications for full thickness skin wound repair in rats.
Collapse
Affiliation(s)
- Poonam Shakya
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - A. K. Sharma
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Naveen Kumar
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Remya Vellachi
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Dayamon D. Mathew
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Prasoon Dubey
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Kiranjeet Singh
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sonal Shrivastava
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - S. K. Maiti
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Anwarul Hasan
- Division of Surgery, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - K. P. Singh
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| |
Collapse
|
14
|
Porcine cholecyst derived extracellular matrix (p-CEM) for reconstruction of full thickness skin wounds in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.wndm.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|