Alibardi L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes.
JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019;
336:145-164. [PMID:
31532061 DOI:
10.1002/jez.b.22901]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.
Collapse