1
|
Zhao J, Qiu C, Wan R, Wang Q, Zhang Y, Yang D, Yang Y, Sun X. Inhibition of CIRBP represses the proliferation and migration of vascular smooth muscle cells via inhibiting Rheb/mTORC1 axis. Biochem Biophys Res Commun 2024; 725:150248. [PMID: 38870847 DOI: 10.1016/j.bbrc.2024.150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.
Collapse
MESH Headings
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Ras Homolog Enriched in Brain Protein/metabolism
- Ras Homolog Enriched in Brain Protein/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Animals
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Signal Transduction
- Male
- Rats
- Rats, Sprague-Dawley
- Humans
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Chenming Qiu
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Rong Wan
- Department of Burn, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yan Zhang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
2
|
Lujan DA, Ochoa JL, Beswick EJ, Howard TA, Hathaway HJ, Perrone-Bizzozero NI, Hartley RS. Cold-Inducible RNA Binding Protein Impedes Breast Tumor Growth in the PyMT Murine Model for Breast Cancer. Biomedicines 2024; 12:340. [PMID: 38397942 PMCID: PMC10886683 DOI: 10.3390/biomedicines12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.
Collapse
Affiliation(s)
- Daniel A. Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Joey L. Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Ellen J. Beswick
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA;
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Helen J. Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Rebecca S. Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| |
Collapse
|
3
|
Bazid H, Shoeib M, Elsayed A, Mostafa M, Shoeib M, El Gayed EMA, Abdallah R. Expression of cold-inducible RNA binding protein in psoriasis. J Immunoassay Immunochem 2022; 43:384-402. [DOI: 10.1080/15321819.2022.2039183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Heba Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University
| | - Mohamed Shoeib
- Clinical Pathology Department, National Research Center, Cairo, Egypt
| | - Asmaa Elsayed
- Dermatology and Andrology Department, National Research Center, Cairo, Egypt
| | - Mohammed Mostafa
- Medical Biochemistry Depaetment, Faculty of Medicine, Menoufia University
| | - May Shoeib
- Pathology Department, Faculty of Medicine, Menoufia University
| | | | | |
Collapse
|
4
|
Kim YM, Hong S. Controversial roles of cold‑inducible RNA‑binding protein in human cancer (Review). Int J Oncol 2021; 59:91. [PMID: 34558638 DOI: 10.3892/ijo.2021.5271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRBP) is a cold‑shock protein comprised of an RNA‑binding motif that is induced by several stressors, such as cold shock, UV radiation, nutrient deprivation, reactive oxygen species and hypoxia. CIRBP can modulate post‑transcriptional regulation of target mRNA, which is required to control DNA repair, circadian rhythms, cell growth, telomere integrity and cardiac physiology. In addition, the crucial function of CIRBP in various human diseases, including cancers and inflammatory disease, has been reported. Although CIRBP is primarily considered to be an oncogene, it may also serve a role in tumor suppression. In the present study, the controversial roles of CIRBP in various human cancers is summarized, with a focus on the interconnectivity between CIRBP and its target mRNAs involved in tumorigenesis. CIRBP may represent an important prognostic marker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Lin TY, Chen Y, Jia JS, Zhou C, Lian M, Wen YT, Li XY, Chen HW, Lin XL, Zhang XL, Xiao SJ, Sun Y, Xiao D. Loss of Cirbp expression is correlated with the malignant progression and poor prognosis in nasopharyngeal carcinoma. Cancer Manag Res 2019; 11:6959-6969. [PMID: 31413636 PMCID: PMC6662521 DOI: 10.2147/cmar.s211389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: The correlation of cold-inducible RNA-binding protein (Cirbp) expression with clinicopathological features including patient prognosis in nasopharyngeal carcinoma (NPC) was investigated. Methods: The expression of Cirbp in NPC cell lines and tissue specimens was examined by qRT-PCR or immunohistochemistry (IHC). Results: Immunohistochemistry (IHC) results showed that high Cirbp expression was detected in 61 of 61 non-cancerous nasopharyngeal squamous epithelial biopsies, whereas the significantly reduced expression of Cirbp was observed in NPC specimens. In addition, IHC assay for Cirbp protein illustrated that the cells of 177 NPC samples and nasopharyngeal squamous epithlial cells displayed strong signals in nuclei and faint signals in cytoplasm, whereas Cirbp protein is mainly detected in the cell’s cytoplasm in many other cancers. More importantly, TNM classification displayed that the low expression of Cirbp was more frequently observed in T3-T4, N2-N3, M1 and III-IV NPC biopsies, and undifferentiated carcinoma (UDC) than T1-T2, N0-N1, M0 and I-II tumors, and differentiated nonkeratinizing carcinoma (DNKC), suggesting that Cirbp loss is a key molecular event in advanced cases of NPC. Kaplan–Meier survival analysis indicated that NPC patients showing lower Cirbp expression had a significantly shorter overall survival time than those with high Cirbp expression. Multivariate analysis suggested that the level of Cirbp expression was an independent prognostic indicator for NPC survival. Finally, we revealed a significant positive association between Cirbp expression and E-cadherin, and a notable negative correlation between Cirbp expression and Ki67 labeling index in NPC biopsies. Conclusion: Collectively, these findings demonstrate that loss of Cirbp expression is correlated with malignant progression and poor prognosis in NPC.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jun-Shuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Mei Lian
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yue-Ting Wen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiao-Yan Li
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Heng-Wei Chen
- Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin 541199, People's Republic of China
| | - Yan Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, People's Republic of China.,Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
6
|
Zhou KW, Jiang K, Zhu W, Weng G. Expression of cold-inducible RNA-binding protein (CIRP) in renal cell carcinoma and the effect of CIRP downregulation cell proliferation and chemosensitivity to gemcitabine. Oncol Lett 2018; 15:7611-7616. [PMID: 29849797 PMCID: PMC5962864 DOI: 10.3892/ol.2018.8338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/21/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to investigate the expression of cold-inducible RNA-binding protein (CIRP) in renal cell carcinoma (RCC) and to determine the effects of downregulation of CIRP on cell proliferation and chemosensitivity to gemcitabine. The expression of CIRP was detected by western blot analysis, quantitative polymerase chain reaction and immunohistochemistry (IHC) in 17 RCC and peri-cancerous tissue samples. Subsequently, the RCC 786-0 cell line was selected in order to investigate the function of CIRP using RNA interference (RNAi) technology, which was able to inhibit the expression of CIRP in vitro. Furthermore, the chemosensitivity to gemcitabine of each group [CIRP small interfering RNA (siCIRP), negative control small interfering RNA (siNC) and blank control] was compared. There were marked differences between the RCC and peri-cancerous tissues. IHC demonstrated that the CIRP expression in 13/17 (76.50%) tumor samples was markedly positive compared with that in the peri-cancerous tissues and the most common pathological type was clear cell RCC (92.30%). This observation was further confirmed through western blot analysis of protein expression levels. CIRP downregulation by RNAi in the RCC 786-0 cell line significantly decreased RCC proliferation. Additionally, when RNAi was coupled with gemcitabine treatment, there was a significant increase in apoptosis in the siCIRP group. CIRP was overexpressed in RCC tissues and in the 786-0 cell line. Downregulation of CIRP by siRNA inhibited the proliferation of the 786-0 cell line and enhanced the chemosensitivity of the cells to gemcitabine. Therefore, CIRP downregulation may provide a novel pathway for the treatment of metastatic RCC.
Collapse
Affiliation(s)
- Ke-Wen Zhou
- Department of Urology, Ningbo Urology and Kidney Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Kun Jiang
- Department of Urology, Ren Min Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Weizhi Zhu
- Department of Urology, Ningbo Urology and Kidney Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Guobin Weng
- Department of Urology, Ningbo Urology and Kidney Hospital, Ningbo, Zhejiang 315100, P.R. China
| |
Collapse
|
7
|
Zhang F, Brenner M, Yang WL, Wang P. A cold-inducible RNA-binding protein (CIRP)-derived peptide attenuates inflammation and organ injury in septic mice. Sci Rep 2018; 8:3052. [PMID: 29434211 PMCID: PMC5809586 DOI: 10.1038/s41598-017-13139-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a novel sepsis inflammatory mediator and C23 is a putative CIRP competitive inhibitor. Therefore, we hypothesized that C23 can ameliorate sepsis-associated injury to the lungs and kidneys. First, we confirmed that C23 dose-dependently inhibited TNF-α release, IκBα degradation, and NF-κB nuclear translocation in macrophages stimulated with CIRP. Next, we observed that male C57BL/6 mice treated with C23 (8 mg/kg BW) at 2 h after cecal ligation and puncture (CLP) had lower serum levels of LDH, ALT, IL-6, TNF-α, and IL-1β (reduced by ≥39%) at 20 h after CLP compared with mice treated with vehicle. C23-treated mice also had improved lung histology, less TUNEL-positive cells, lower serum levels of creatinine (34%) and BUN (26%), and lower kidney expression of NGAL (50%) and KIM-1 (86%). C23-treated mice also had reduced lung and kidney levels of IL-6, TNF-α, and IL-1β. E-selectin and ICAM-1 mRNA was significantly lower in C23-treated mice. The 10-day survival after CLP of vehicle-treated mice was 55%, while that of C23-treated mice was 85%. In summary, C23 decreased systemic, lung, and kidney injury and inflammation, and improved the survival rate after CLP, suggesting that it may be developed as a new treatment for sepsis.
Collapse
Affiliation(s)
- Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, United States
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, United States.
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, United States.
| |
Collapse
|
8
|
Lujan DA, Ochoa JL, Hartley RS. Cold-inducible RNA binding protein in cancer and inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9. [PMID: 29322631 DOI: 10.1002/wrna.1462] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022]
Abstract
RNA binding proteins (RBPs) play key roles in RNA dynamics, including subcellular localization, translational efficiency and metabolism. Cold-inducible RNA binding protein (CIRP) is a stress-induced protein that was initially described as a DNA damage-induced transcript (A18 hnRNP), as well as a cold-shock domain containing cold-stress response protein (CIRBP) that alters the translational efficiency of its target messenger RNAs (mRNAs). This review summarizes recent work on the roles of CIRP in the context of inflammation and cancer. The function of CIRP in cancer appeared to be solely driven though its functions as an RBP that targeted cancer-associated mRNAs, but it is increasingly clear that CIRP also modulates inflammation. Several recent studies highlight roles for CIRP in immune responses, ranging from sepsis to wound healing and tumor-promoting inflammation. While modulating inflammation is an established role for RBPs that target cytokine mRNAs, CIRP appears to modulate inflammation by several different mechanisms. CIRP has been found in serum, where it binds the TLR4-MD2 complex, acting as a Damage-associated molecular pattern (DAMP). CIRP activates the NF-κB pathway, increasing phosphorylation of Iκκ and IκBα, and stabilizes mRNAs encoding pro-inflammatory cytokines. While CIRP promotes higher levels of pro-inflammatory cytokines in certain cancers, it also decreases inflammation to accelerate wound healing. This dichotomy suggests that the influence of CIRP on inflammation is context dependent and highlights the importance of detailing the mechanisms by which CIRP modulates inflammation. WIREs RNA 2018, 9:e1462. doi: 10.1002/wrna.1462 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Daniel A Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Joey L Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine and University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
9
|
Recent progress in the research of cold-inducible RNA-binding protein. Future Sci OA 2017; 3:FSO246. [PMID: 29134130 PMCID: PMC5674272 DOI: 10.4155/fsoa-2017-0077] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a cold-shock protein which can be induced after exposure to a moderate cold-shock in different species ranging from amphibians to humans. Expression of CIRP can also be regulated by hypoxia, UV radiation, glucose deprivation, heat stress and H2O2, suggesting that CIRP is a general stress-response protein. In response to stress, CIRP can migrate from the nucleus to the cytoplasm and regulate mRNA stability through its binding site on the 3'-UTR of its targeted mRNAs. Through the regulation of its targets, CIRP has been implicated in multiple cellular process such as cell proliferation, cell survival, circadian modulation, telomere maintenance and tumor formation and progression. In addition, CIRP can also exert its functions by directly interacting with intracellular signaling proteins. Moreover, CIRP can be secreted out of cells. Extracellular CIRP functions as a damage-associated molecular pattern to promote inflammatory responses and plays an important role in both acute and chronic inflammatory diseases. Here, we summarize novel findings of CIRP investigation and hope to provide insights into the role of CIRP in cell biology and diseases.
Collapse
|