1
|
Filippopoulou C, Thomé CC, Perdikari S, Ntini E, Simos G, Bohnsack KE, Chachami G. Hypoxia-driven deSUMOylation of EXOSC10 promotes adaptive changes in the transcriptome profile. Cell Mol Life Sci 2024; 81:58. [PMID: 38279024 PMCID: PMC10817850 DOI: 10.1007/s00018-023-05035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/28/2024]
Abstract
Reduced oxygen availability (hypoxia) triggers adaptive cellular responses via hypoxia-inducible factor (HIF)-dependent transcriptional activation. Adaptation to hypoxia also involves transcription-independent processes like post-translational modifications; however, these mechanisms are poorly characterized. Investigating the involvement of protein SUMOylation in response to hypoxia, we discovered that hypoxia strongly decreases the SUMOylation of Exosome subunit 10 (EXOSC10), the catalytic subunit of the RNA exosome, in an HIF-independent manner. EXOSC10 is a multifunctional exoribonuclease enriched in the nucleolus that mediates the processing and degradation of various RNA species. We demonstrate that the ubiquitin-specific protease 36 (USP36) SUMOylates EXOSC10 and we reveal SUMO1/sentrin-specific peptidase 3 (SENP3) as the enzyme-mediating deSUMOylation of EXOSC10. Under hypoxia, EXOSC10 dissociates from USP36 and translocates from the nucleolus to the nucleoplasm concomitant with its deSUMOylation. Loss of EXOSC10 SUMOylation does not detectably affect rRNA maturation but affects the mRNA transcriptome by modulating the expression levels of hypoxia-related genes. Our data suggest that dynamic modulation of EXOSC10 SUMOylation and localization under hypoxia regulates the RNA degradation machinery to facilitate cellular adaptation to low oxygen conditions.
Collapse
Affiliation(s)
- Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Chairini C Thomé
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Sofia Perdikari
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - Evgenia Ntini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
2
|
Fan F, Du Y, Chen L, Chen Y, Zhong Z, Li P, Cheng Y. Metabolomic and Proteomic Identification of Serum Exosome for Hypoxic Preconditioning Participants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5509913. [PMID: 37089582 PMCID: PMC10118903 DOI: 10.1155/2023/5509913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 04/25/2023]
Abstract
Background In high-altitude areas, hypoxic stress can elicit a series of physiological responses in humans. Exosomes play important roles in both local and distal cellular communications. Methods We used ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) studies to analyze the differentially expressed metabolomics and proteomics in serum exosome of hypoxic preconditioning participants and control subjects in the hypoxic conditions. Results Fifty-seven military personnel were divided into hypoxic preconditioning group (n = 27) and control group (n = 30). One hundred thirty-six differentially expressed serum exosomal metabolites were found between the hypoxic preconditioning and control groups in the hypoxic conditions, and these differentially expressed metabolites were enriched in pathways related to lysine degradation, butanoate metabolism, GABAergic synapse, histidine metabolism, and linoleic acid metabolism. In addition, hypoxic preconditioning participants showed 102 excellent differential expressions of proteomics compared to controls, which involved actin cytoskeleton organization, hemostasis, complement and coagulation cascades, vesicle-medicated transport, wound healing, etc. Conclusions We revealed that the expression of exosomal metabolites and proteomics in hypoxic preconditioning participants was significantly different compared to controls in hypoxic conditions.
Collapse
Affiliation(s)
- Fangcheng Fan
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Cheng
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Taze C, Drakouli S, Samiotaki M, Panayotou G, Simos G, Georgatsou E, Mylonis I. Short-term hypoxia triggers ROS and SAFB mediated nuclear matrix and mRNA splicing remodeling. Redox Biol 2022; 58:102545. [PMID: 36427398 PMCID: PMC9692040 DOI: 10.1016/j.redox.2022.102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular response to hypoxia, in addition to HIF-dependent transcriptional reprogramming, also involves less characterized transcription-independent processes, such as alternative splicing of the VEGFA transcript leading to the production of the proangiogenic VEGF form. We now show that this event depends on reorganization of the splicing machinery, triggered after short-term hypoxia by ROS production and intranuclear redistribution of the nucleoskeletal proteins SAFB1/2. Exposure to low oxygen causes fast dissociation of SAFB1/2 from the nuclear matrix, which is reversible, inhibited by antioxidant treatment, and also observed under normoxia when the mitochondrial electron transport chain is blocked. This is accompanied by altered interactions between SAFB1/2 and the splicing machinery, translocation of kinase SRPK1 to the cytoplasm, and dephosphorylation of RS-splicing factors. Depletion of SAFB1/2 under normoxia phenocopies the hypoxic and ROS-mediated switch in VEGF mRNA splicing. These data suggest that ROS-dependent remodeling of the nuclear architecture can promote production of splicing variants that facilitate adaptation to hypoxia.
Collapse
Affiliation(s)
- Chrysa Taze
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Sotiria Drakouli
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - George Panayotou
- Institute for Bioinnovation, BSRC “Alexander Fleming”, Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Eleni Georgatsou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, 41500, Greece,Corresponding author.
| |
Collapse
|
4
|
Wang M, Cai W, Yang AJ, Wang CY, Zhang CL, Liu W, Xie XF, Gong YY, Zhao YY, Wu WC, Zhou Q, Zhao CY, Dong JF, Li M. Gastric cancer cell-derived extracellular vesicles disrupt endothelial integrity and promote metastasis. Cancer Lett 2022; 545:215827. [PMID: 35842018 DOI: 10.1016/j.canlet.2022.215827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
The endothelium is the critical barrier that controls transendothelial communications. Blood vessels in cancer tissue are poorly developed and highly permeable. However, it is poorly understood how circulating cancer cells released through these "leaky" vessels break the intact vasculature of remote organs to metastasize. We investigated the roles of cancer cell-derived extracellular vesicles (CEVs) in regulating cancer metastasis by analyzing samples from gastric cancer patients, performing in vitro experiments, and studying mouse models. We made several novel observations. First, the rate of metastasis was closely associated with plasma levels of CEVs in patients with gastric cancer. Second, cultured endothelial cells endocytosed CEVs, resulting in cytoskeletal rearrangement, low expression of the junction proteins cadherin and CD31, and forming large intercellular gaps to allow the transendothelial migration of cancer cells. The dynamin inhibitor Dynasore prevented these CEV-induced changes of endothelial cells by blocking CEVs endocytosis. Third, CEVs disrupted the endothelial barrier of cancer-bearing mice to promote cancer metastasis. Finally, lactadherin promoted the clearance of circulating CEVs to reduce metastasis. These results demonstrate the essential role of CEVs in promoting the metastasis of gastric cancer.
Collapse
Affiliation(s)
- Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Wei Cai
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Gansu Provincial Hospital, Lanzhou, China.
| | - Ai-Jun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Chen-Yu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Chen-Li Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Wei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Xiao-Feng Xie
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; School of Medicine, Northwest MinZu University, Lanzhou, China.
| | - Yuan-Yuan Gong
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathology, Department of Basic Medical Sciences, Fenyang College of Shanxi Medical University, Fenyang, China.
| | - Ying-Ying Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Pathology, Department of Basic Medical Sciences, Fenyang College of Shanxi Medical University, Fenyang, China.
| | - Wen-Cheng Wu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Quan Zhou
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Chan-Yuan Zhao
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA; Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Ayanlaja AA, Hong X, Cheng B, Zhou H, Kanwore K, Alphayo-Kambey P, Zhang L, Tang C, Adeyanju MM, Gao D. Susceptibility of cytoskeletal-associated proteins for tumor progression. Cell Mol Life Sci 2021; 79:13. [PMID: 34964908 PMCID: PMC11072373 DOI: 10.1007/s00018-021-04101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD, 21287, USA
| | - Xiaoliang Hong
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Cheng
- The Affiliated Oriental Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han Zhou
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kouminin Kanwore
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Piniel Alphayo-Kambey
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Zhang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chuanxi Tang
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | | | - Dianshuai Gao
- Public Experimental Laboratory, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Fershtat LL, Zhilin ES. Recent Advances in the Synthesis and Biomedical Applications of Heterocyclic NO-Donors. Molecules 2021; 26:5705. [PMID: 34577175 PMCID: PMC8470015 DOI: 10.3390/molecules26185705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) is a key signaling molecule that acts in various physiological processes such as cellular metabolism, vasodilation and transmission of nerve impulses. A wide number of vascular diseases as well as various immune and neurodegenerative disorders were found to be directly associated with a disruption of NO production in living organisms. These issues justify a constant search of novel NO-donors with improved pharmacokinetic profiles and prolonged action. In a series of known structural classes capable of NO release, heterocyclic NO-donors are of special importance due to their increased hydrolytic stability and low toxicity. It is no wonder that synthetic and biochemical investigations of heterocyclic NO-donors have emerged significantly in recent years. In this review, we summarized recent advances in the synthesis, reactivity and biomedical applications of promising heterocyclic NO-donors (furoxans, sydnone imines, pyridazine dioxides, azasydnones). The synthetic potential of each heterocyclic system along with biochemical mechanisms of action are emphasized.
Collapse
Affiliation(s)
- Leonid L. Fershtat
- Laboratory of Nitrogen Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russia;
| | | |
Collapse
|
7
|
Meng C, Sun Y, Hu Z, Wang H, Jiang W, Song J, Yu Y, Hu D. Effects of hypoxia inducible factor-1α on expression levels of MLCK, p-MLC and ZO-1 of rat endothelial cells. Biochem Biophys Res Commun 2019; 519:591-596. [PMID: 31540688 DOI: 10.1016/j.bbrc.2019.08.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To examine the aberrant expression of endothelial permeability associated proteins including MLCK, p-MLC and ZO-1 in presence of different levels of hypoxia-inducible factor 1 alpha (HIF-1α). METHODS We established monolayer vascular endothelial cell model with the primary rat endothelial cells. Over-expressed or under-expressed HIF-1α cell lines were made by endothelial cells transfected with plasmid vector constructed with HIF-1α gene or HIF-1α-specific short hairpin RNA (shRNA). Levels of mRNA and protein of MLCK, p-MLC and ZO-1 were determined using Real-Time PCR and Western blot. All data were analyzed using by One-Way ANOVA method and LSD. RESULTS We successfully cultured the rat endothelial primary cells for four days. The mRNA and protein levels of MLCK and p-MLC were significantly increased in the HIF-1α over-expression group than that in the blank control group and the empty plasmid GV230 group (P<0.05). ZO-1 was significantly lower in the HIF-1α over-expression group than that in the blank control group and the GV230 group. On the contrary, the mRNA and protein levels of MLCK and p-MLC were significantly lower in the HIF-1α under-expression group than that in the blank control group and the shRNA-NC group (P<0.05). ZO-1 was significantly higher in the HIF-1α low-expression group than that in the blank control group and the shRNA-NC group. CONCLUSION HIF-1α positively regulates the expression of MLCK and p-MLC and negatively regulates the expression of ZO-1 in rat monolayer endothelial cells.
Collapse
Affiliation(s)
- Chengying Meng
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youjun Sun
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zijian Hu
- 2018 Class of Clinical Medicine (No.1813010207), The First Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Huan Wang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei Jiang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junhui Song
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youxin Yu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Delin Hu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|