1
|
Li P, Luo X, Zuo S, Fu X, Lin Q, Niu Y, Liang H, Ma B, Li N. Genome-Wide Association Study of Resistance to Largemouth Bass Ranavirus (LMBV) in Micropterus salmoides. Int J Mol Sci 2024; 25:10036. [PMID: 39337523 PMCID: PMC11432711 DOI: 10.3390/ijms251810036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.
Collapse
Affiliation(s)
- Pinhong Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Shaozhi Zuo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Baofu Ma
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China; (P.L.); (X.L.); (S.Z.); (X.F.); (Q.L.); (Y.N.); (H.L.); (B.M.)
| |
Collapse
|
2
|
Tripathi S, Parmar D, Raval S, Mishra R, Singh G. Attenuation of chromium (VI) and arsenic (III)-induced oxidative stress and hepatic apoptosis by phloretin, biochanin-A, and coenzyme Q10 via activation of SIRT1/Nrf2/HO-1/NQO1 signaling. J Biochem Mol Toxicol 2024; 38:e23817. [PMID: 39177155 DOI: 10.1002/jbt.23817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
3
|
Tian L, Luo Y, Ren J, Zhao C. The Role of Oxidative Stress in Hypomagnetic Field Effects. Antioxidants (Basel) 2024; 13:1017. [PMID: 39199261 PMCID: PMC11352208 DOI: 10.3390/antiox13081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
The geomagnetic field (GMF) is crucial for the survival and evolution of life on Earth. The weakening of the GMF, known as the hypomagnetic field (HMF), significantly affects various aspects of life on Earth. HMF has become a potential health risk for future deep space exploration. Oxidative stress is directly involved in the biological effects of HMF on animals or cells. Oxidative stress occurs when there is an imbalance favoring oxidants over antioxidants, resulting in cellular damage. Oxidative stress is a double-edged sword, depending on the degree of deviation from homeostasis. In this review, we summarize the important experimental findings from animal and cell studies on HMF exposure affecting intracellular reactive oxygen species (ROS), as well as the accompanying many physiological abnormalities, such as cognitive dysfunction, the imbalance of gut microbiota homeostasis, mood disorders, and osteoporosis. We discuss new insights into the molecular mechanisms underlying these HMF effects in the context of the signaling pathways related to ROS. Among them, mitochondria are considered to be the main organelles that respond to HMF-induced stress by regulating metabolism and ROS production in cells. In order to unravel the molecular mechanisms of HMF action, future studies need to consider the upstream and downstream pathways associated with ROS.
Collapse
Affiliation(s)
- Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Zhao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; (Y.L.); (J.R.); (C.Z.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
El-Marasy SA, Mostafa RE, Mabrok HB, Khattab MS, Awdan SAE. Protective effect of irbesartan against hepatic ischemia-reperfusion injury in rats: role of ERK, STAT3, and PPAR-γ inflammatory pathways in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03301-6. [PMID: 39167169 DOI: 10.1007/s00210-024-03301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to elucidate the possible hepatocellular protective role of irbesartan during hepatic ischemia-reperfusion injury (HIRI) and the probable underlying mechanisms. Wistar rats were allocated into four groups: sham; HIRI (control); irbesartan (50 mg/kg) + HIRI; irbesartan (100 mg/kg) + HIRI; irbesartan + GW9662 (1 mg/kg, i.p.) + HIRI. Rats pretreated orally with irbesartan or vehicle for 14 days underwent 45-min hepatic ischemia followed by 60-min reperfusion. Irbesartan preconditioning diminished alanine transaminase (ALT) and aspartate transaminase (AST) serum levels, and reduced extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). Irbesartan decreased proapoptotic BAX (bcl-2-like protein 4), increased anti-apoptotic B-cell lymphoma 2 (BCL2) hepatic content, and thereby reduced BAX/BCL2 ratio. Moreover, irbesartan preconditioning reduced autophagy-related proteins Beclin1 and LC3 II, and elevated p62 (protein responsible for autophagosome degradation). It elevated proliferator-activated receptor γ (PPAR-γ), and reduced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) hepatic gene expression. Also, hepatic protein expressions of nuclear factor kappa-B p65 (NF-κB p65) and caspase-3 were lessoned by irbesartan pretreatment in HIRI rats. However, GW9662 abrogated irbesartan's effect on HIRI. The protective effect of irbesartan on HIRI may be mediated by alleviation of ERK, STAT3, and PPAR-γ inflammatory pathways, exerting anti-apoptotic and anti-autophagic effects in HIRI in rats.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Rasha E Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Arafa ESA, Hassanein EHM, Ibrahim NA, Buabeid MA, Mohamed WR. Involvement of Nrf2-PPAR-γ signaling in Coenzyme Q10 protecting effect against methotrexate-induced testicular oxidative damage. Int Immunopharmacol 2024; 129:111566. [PMID: 38364740 DOI: 10.1016/j.intimp.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1β and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Nihal A Ibrahim
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
6
|
Liss KHH, Mousa M, Bucha S, Lutkewitte A, Allegood J, Cowart LA, Finck BN. Dynamic changes in the mouse hepatic lipidome following warm ischemia reperfusion injury. Sci Rep 2024; 14:3584. [PMID: 38351300 PMCID: PMC10864394 DOI: 10.1038/s41598-024-54122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Liver failure secondary to metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most common cause for liver transplantation in many parts of the world. Moreover, the prevalence of MASLD not only increases the demand for liver transplantation, but also limits the supply of suitable donor organs because steatosis predisposes grafts to ischemia-reperfusion injury (IRI). There are currently no pharmacological interventions to limit hepatic IRI because the mechanisms by which steatosis leads to increased injury are unclear. To identify potential novel mediators of IRI, we used liquid chromatography and mass spectrometry to assess temporal changes in the hepatic lipidome in steatotic and non-steatotic livers after warm IRI in mice. Our untargeted analyses revealed distinct differences between the steatotic and non-steatotic response to IRI and highlighted dynamic changes in lipid composition with marked changes in glycerophospholipids. These findings enhance our knowledge of the lipidomic changes that occur following IRI and provide a foundation for future mechanistic studies. A better understanding of the mechanisms underlying such changes will lead to novel therapeutic strategies to combat IRI.
Collapse
Affiliation(s)
- Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Mousa
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shria Bucha
- Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Lutkewitte
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian N Finck
- Department of Medicine, Division of Nutritional Science and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Huang F, Deng Z, Zhang Q, Zhang Z, Li X, Zeng W, Wang Y, Hei Z, Yuan D. Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury. Transl Res 2023; 262:44-59. [PMID: 37507007 DOI: 10.1016/j.trsl.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver failure. However, liver graft injury remains a challenge. This study aimed to investigate the role of connexin32 (Cx32) in liver graft injury and elucidate its mechanism of action. Through detecting liver graft samples from 6 patients, we observed that changes in the Cx32 level coincided with liver graft injury. Therefore, we established autologous orthotopic liver transplantation (AOLT) models using Cx32-knockout and wild-type mice and hypoxia/reoxygenation (H/R) and lipopolysaccharide (LPS) pretreatment models using alpha mouse liver 12 (AML12) cells, to explore Cx32 mechanisms in liver graft injury. Following in vivo and in vitro Cx32 knockout, oxidative stress and inflammatory response were inhibited through the regulation of PKC-α/NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thereby reducing Bak/Bax-related apoptosis and ameliorating liver graft injury. When the Cx32-based gap junction (GJ) was blocked with 2-aminoethoxydiphenyl borate (2-APB), ROS transfer was attenuated between neighboring cells, exacerbated oxidative stress and inflammatory response were prevented, and aggravation of liver graft injury was mitigated. These results highlight the dual regulation mechanism of Cx32 in liver graft injury. Through interaction with PKC-α, Cx32 regulated the NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thus directly triggering oxidative stress and inflammatory response. Simultaneously, mass-produced ROS were transferred to neighboring cells through Cx32 channels, for which oxidative stress and the inflammatory response were aggravated indirectly. Finally, Bak/Bax-related apoptosis was activated, thereby worsening liver graft injury. Our findings propose Cx32 as a dual mechanistic factor for oxidative stress and inflammatory signaling pathways in regulating cell apoptosis on liver graft injury, which suggests a promising therapeutic targets for liver graft injury.
Collapse
Affiliation(s)
- Fei Huang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Qian Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zheng Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Yanling Wang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
8
|
Olejnik A, Radajewska A, Krzywonos-Zawadzka A, Bil-Lula I. Klotho inhibits IGF1R/PI3K/AKT signalling pathway and protects the heart from oxidative stress during ischemia/reperfusion injury. Sci Rep 2023; 13:20312. [PMID: 37985893 PMCID: PMC10662387 DOI: 10.1038/s41598-023-47686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) of the heart involves the activation of oxidative and proapoptotic pathways. Simultaneously Klotho protein presents anti-aging, antiapoptotic and antioxidative properties. Therefore, this study aimed to evaluate the effect of Klotho protein on oxidative stress in hearts subjected to IRI. Isolated rat hearts perfused with the Langendorff method were subjected to ischemia, followed by reperfusion, in the presence or absence of recombinant rat Klotho protein. The factors involved in the activation of insulin-like growth factor receptor (IGF1R)/phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signalling pathway were evaluated. IRI caused activation of the IGF1R (p = 0.0122)/PI3K (p = 0.0022) signalling, as compared to the aerobic control group. Infusion supply of Klotho protein during IRI significantly reduced the level of phospho-IGF1R (p = 0.0436), PI3K (p = 0.0218) and phospho-AKT (p = 0.0020). Transcriptional activity of forkhead box protein O3 (FOXO3) was reduced (p = 0.0207) in hearts subjected to IRI, compared to aerobic control. Administration of Klotho decreased phosphorylation of FOXO3 (p = 0.0355), and enhanced activity of glutathione peroxidase (p = 0.0452) and superoxide dismutase (p = 0.0060) in IRI + Klotho group. The levels of reactive oxygen/nitrogen species (ROS/RNS) (p = 0.0480) and hydrogen peroxide (H2O2) (p = 0.0460), and heart injury (p = 0.0005) were significantly increased in hearts from the IRI group in comparison to the aerobic group. Klotho reduced NADPH oxidase 2 (NOX2) (p = 0.0390), ROS/RNS (p = 0.0435) and H2O2 (p = 0.0392) levels, and heart damage (p = 0.0286) in the hearts subjected to IRI. In conclusion, Klotho contributed to the protection of the heart against IRI and oxidative stress via inhibition of the IGF1R/PI3K/AKT pathway, thus can be recognized as a novel cardiopreventive/cardioprotective agent.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556, Wrocław, Poland.
| |
Collapse
|
9
|
Shan M, Ma Q, Sun Y, Gao F, Cai S. The Protective Effect and Mechanism of a Phytochemical Extract from the Wild Vegetable Shutou ( Crateva unilocularis Buch.) against Acetaminophen-Induced Liver Injury in Mice. Foods 2023; 12:3109. [PMID: 37628108 PMCID: PMC10453156 DOI: 10.3390/foods12163109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Acetaminophen (APAP) abuse is a common public health problem which can cause severe liver damage. However, strategies for dealing with this situation safely and effectively are very limited. The goal of the current work was to evaluate the protection and potential molecular mechanisms of an ethanol extract from shoots of the wild vegetable shutou (Crateva unilocularis Buch.) (ECS) against APAP-induced liver damage in mice. Mice orally received ECS for seven days (300 or 600 mg/kg b.w. per day) before being intraperitoneally injected with APAP (250 mg/kg). Results exhibited that ECS obviously decreased the content of alkaline phosphatase, alanine aminotransferase, aspartate transaminase, and malondialdehyde (p < 0.05). Catalase and superoxide dismutase were notably restored (p < 0.05), and the content of reduced glutathione was obviously increased (p < 0.05). Moreover, ECS significantly inhibited the secretion of interleukin-1β and tumor necrosis factor-α (p < 0.05). Further analyses of the mechanisms showed that ECS may alleviate oxidative stress in the liver by increasing the expression of the nuclear factor erythroid-2-related factor 2 and NADH quinone oxidoreductase 1 proteins, and may suppress liver inflammation by inhibiting the expression of the phosphorylated-inhibitor kappa B alpha/inhibitor kappa B alpha, phosphorylated-nuclear factor κB/nuclear factor κB, and cyclooxygenase-2 proteins. Meanwhile, ECS inhibited hepatocyte apoptosis by enhancing B-cell lymphoma gene 2 and suppressing Bcl-2-associated X protein. In summary, ECS may be used as a dietary supplement to prevent the liver damage caused by APAP abuse.
Collapse
Affiliation(s)
- Meimei Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.S.); (Q.M.); (Y.S.)
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Qian Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.S.); (Q.M.); (Y.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yilin Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.S.); (Q.M.); (Y.S.)
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (M.S.); (Q.M.); (Y.S.)
| |
Collapse
|
10
|
Ivanova AY, Shirokov IV, Toshchakov SV, Kozlova AD, Obolenskaya ON, Mariasina SS, Ivlev VA, Gartseev IB, Medvedev OS. Effects of Coenzyme Q10 on the Biomarkers (Hydrogen, Methane, SCFA and TMA) and Composition of the Gut Microbiome in Rats. Pharmaceuticals (Basel) 2023; 16:ph16050686. [PMID: 37242469 DOI: 10.3390/ph16050686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The predominant route of administration of drugs with coenzyme Q10 (CoQ10) is administration per os. The bioavailability of CoQ10 is about 2-3%. Prolonged use of CoQ10 to achieve pharmacological effects contributes to the creation of elevated concentrations of CoQ10 in the intestinal lumen. CoQ10 can have an effect on the gut microbiota and the levels of biomarkers it produces. CoQ10 at a dose of 30 mg/kg/day was administered per os to Wistar rats for 21 days. The levels of gut microbiota biomarkers (hydrogen, methane, short-chain fatty acids (SCFA), and trimethylamine (TMA)) and taxonomic composition were measured twice: before the administration of CoQ10 and at the end of the experiment. Hydrogen and methane levels were measured using the fasting lactulose breath test, fecal and blood SCFA and fecal TMA concentrations were determined by NMR, and 16S sequencing was used to analyze the taxonomic composition. Administration of CoQ10 for 21 days resulted in a 1.83-fold (p = 0.02) increase in hydrogen concentration in the total air sample (exhaled air + flatus), a 63% (p = 0.02) increase in the total concentration of SCFA (acetate, propionate, butyrate) in feces, a 126% increase in butyrate (p = 0.04), a 6.56-fold (p = 0.03) decrease in TMA levels, a 2.4-fold increase in relative abundance of Ruminococcus and Lachnospiraceae AC 2044 group by 7.5 times and a 2.8-fold decrease in relative representation of Helicobacter. The mechanism of antioxidant effect of orally administered CoQ10 can include modification of the taxonomic composition of the gut microbiota and increased generation of molecular hydrogen, which is antioxidant by itself. The evoked increase in the level of butyric acid can be followed by protection of the gut barrier function.
Collapse
Affiliation(s)
- Anastasiia Yu Ivanova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| | - Ivan V Shirokov
- Medical and Technical Information Technologies, Bauman Moscow State Technical University, Moscow 105005, Russia
| | - Stepan V Toshchakov
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Aleksandra D Kozlova
- Center for Genome Research, National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | - Olga N Obolenskaya
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Moscow State University, Moscow 119991, Russia
| | - Vasily A Ivlev
- Pharmacy Resource Center, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Ilya B Gartseev
- The Institute of Artificial Intelligence of Russian Technological University MIREA, Moscow 119454, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
- National Medical Research Center of Cardiology of the Ministry of Health of the Russian Federation, Laboratory of Experimental Pharmacology, Moscow 121552, Russia
| |
Collapse
|
11
|
Omorou M, Huang Y, Gao M, Mu C, Xu W, Han Y, Xu H. The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury. Cell Mol Life Sci 2023; 80:102. [PMID: 36939886 PMCID: PMC11072419 DOI: 10.1007/s00018-023-04755-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Forkhead box O3 is a protein encoded by the FOXO3 gene expressed throughout the body. FOXO3 could play a crucial role in longevity and many other pathologies, such as Alzheimer's disease, glioblastoma, and stroke. This study is a comprehensive review of the expression of FOXO3 under ischemia and reperfusion (IR) and the molecular mechanisms of its regulation and function. We found that the expression level of FOXO3 under ischemia and IR is tissue-specific. Specifically, the expression level of FOXO3 is increased in the lung and intestinal epithelial cells after IR. However, FOXO3 is downregulated in the kidney after IR and in the skeletal muscles following ischemia. Interestingly, both increased and decreased FOXO3 expression have been reported in the brain, liver, and heart following IR. Nevertheless, these contribute to stimulating ischemia and reperfusion injury via the induction of inflammatory response, apoptosis, autophagy, mitophagy, pyroptosis, and oxidative damage. These results suggest that FOXO3 could play protective effects in some organs and detrimental effects in others against IR injury. Most importantly, these findings indicate that controlling FOXO3 expression, genetically or pharmacologically, could contribute to preventing or treating ischemia and reperfusion damage.
Collapse
Affiliation(s)
- Moussa Omorou
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yiwei Huang
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Meng Gao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Chenxi Mu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Weijing Xu
- Department Epidemiology and Health Statistics, Jiamusi University School of Public Health, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yuchun Han
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China.
| |
Collapse
|
12
|
Yang H, Zhang P, Wang Q, Cheng K, Zhao Y. The research development of STAT3 in hepatic ischemia-reperfusion injury. Front Immunol 2023; 14:1066222. [PMID: 36761734 PMCID: PMC9902876 DOI: 10.3389/fimmu.2023.1066222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common complication of surgery, which can cause rapid deterioration of the liver function, increase the risk of graft rejection, and seriously affect the prognosis of patients. The signal transducer and activator of transcription 3 (STAT3) protein has been implicated in pathogenesis of IRI. STAT3 influences the mitochondria through multiple pathways and is also involved in apoptosis and other forms of programmed cell death. STAT3 is associated with Janus kinase (JAK), phosphoinositide-3 kinase (PI3K), and heme oxygenase-1 (HO-1) in liver IRI. The STAT3 pathway plays a dual role in IRI as it can also regulate lipid metabolism which may have potential for treating IRI fatty liver. In this review, we summarize research on the function of STAT3 in liver IRI to provide references for its application in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Yujun Zhao
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Zhang B, Hong L, Ke J, Zhong Y, Cao N, Li W, Xu D, Tian Y, Huang Y, Chen W, Li B. Polysaccharide of Atractylodes macrocephala Koidz alleviate lipopolysaccharide-induced liver injury in goslings via the p53 and FOXO pathways. Poult Sci 2023; 102:102480. [PMID: 36680857 PMCID: PMC9871332 DOI: 10.1016/j.psj.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Lipopolysaccharide (LPS) can affect the immune system of geese by inducing liver injury. The polysaccharide of Atractylodes macrocephala Koidz (PAMK) have obvious immune-enhancing effects. Accordingly, this experiment investigated the effect of PAMK on LPS-induced liver injury in goslings. Two hundred 1-day-old goslings were randomly divided into the control group, LPS group, PAMK group, and PAMK+ LPS group, and the PAMK and PAMK+ LPS groups were fed the basal diet with 400 mg/kg PAMK, while the control and LPS groups were fed the basal diet. On D 21, 23, and 25 of the formal trial, the goslings in the LPS and PAMK+LPS groups were injected intraperitoneally with 2 mg/kg LPS, and goslings in the control and PAMK groups were injected intraperitoneally with the same amount of saline. Livers were collected on D 25. HE-stained sections showed that PAMK could effectively alleviate the LPS-induced indistinct hepatic cord structure, loss of cytoplasmic contents of hepatocytes, and dilatation of hepatic sinusoids. The biochemical parameters of liver tissues showed that PAMK could alleviate the LPS-induced upregulation of alanine aminotransferase and aspartate aminotransferase. To further investigate the mechanism of the mitigating effect of PAMK on LPS-induced injury, livers from the LPS and PAMK+LPS groups were selected for transcriptome sequencing. The sequencing results showed that there were 406 differentially expressed genes (DEGs) in the livers of LPS and PAMK+LPS goslings, of which 242 upregulated and 164 downregulated. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis showed that DEGs were significantly enriched in immune signal transduction, cell cycle, and cell metabolism. Besides, protein‒protein interaction analysis showed that 129 DEGs were associated with each other, including 7 DEGs enriched in the p53 and FOXO signaling pathway. In conclusion, PAMK may alleviate LPS-induced liver injury in gosling through the p53 and FOXO signaling pathway. These results provide a basis for further development of PAMK as an immunomodulator.
Collapse
Affiliation(s)
- Bingqi Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Longsheng Hong
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Jingfei Ke
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yueyun Zhong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wenbin Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
14
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [PMID: 36306869 DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
15
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
16
|
Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
|
17
|
Rajkhowa B, Mehan S, Sethi P, Prajapati A, Suri M, Kumar S, Bhalla S, Narula AS, Alshammari A, Alharbi M, Alkahtani N, Alghamdi S, Kalfin R. Activating SIRT-1 Signalling with the Mitochondrial-CoQ10 Activator Solanesol Improves Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder. Pharmaceuticals (Basel) 2022; 15:ph15080959. [PMID: 36015107 PMCID: PMC9415079 DOI: 10.3390/ph15080959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol’s protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.
Collapse
Affiliation(s)
- Bidisha Rajkhowa
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
- Correspondence: ; Tel.: +91-8059889909
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Sonalika Bhalla
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, India; (B.R.); (P.S.); (A.P.); (M.S.); (S.K.); (S.B.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Nora Alkahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Saeed Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (N.A.); (S.A.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
18
|
Zhao C, Tang J, Li X, Yan Z, Zhao L, Lang W, Yuan C, Zhou C. Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury. Food Funct 2022; 13:8436-8464. [PMID: 35861207 DOI: 10.1039/d1fo03616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, respectively. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/β-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theoretical basis for the clinical application of PB2 against NS.
Collapse
Affiliation(s)
- Chuanping Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Jiamei Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Xiaoya Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Zihan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Liangliang Zhao
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Wenbo Lang
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Chengyan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| |
Collapse
|
19
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
20
|
Formulation and Characterization of O/W Nanoemulsions of Hemp Seed Oil for Protection from Steatohepatitis: Analysis of Hepatic Free Fatty Acids and Oxidation Markers. Pharmaceuticals (Basel) 2022; 15:ph15070864. [PMID: 35890162 PMCID: PMC9316199 DOI: 10.3390/ph15070864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common type of metabolic liver disease which is characterized by fatty changes associated with hepatocyte injury, lobular inflammation, and/or liver fibrosis. Nanoemulsions are kinetically stable colloidal systems characterized by small droplet size. Hemp seed oil is a natural oil derived from Cannabis sativa seeds. The current study was designed to formulate nanoemulsion preparations of hemp seed oil with promising enhanced biological activity against high fat (HF) diet induced NASH in rats. Four nanoemulsion formulas (NEFs) were formulated based on high-pressure homogenization technique and evaluated for droplet size, zeta potential (ZP), polydispersity index (PDI), electrical conductivity, pH, and viscosity, as well as the preparation stability. The best NEF was selected to perform an in vivo rat study; selection was based on the smallest droplet size and highest physical stability. Results showed that NEF#4 showed the best physiochemical characters among the other preparations. Twenty male rats were assigned to four groups as follows: normal, NASH control, NASH + hemp seed oil and NASH + hemp seed oil NEF4. The rats were tested for body weight (BWt) change, insulin resistance (IR) and hepatic pathology. The hemp seed NEF#4 protected against NASH progression in rats and decreased the % of BWt gain compared to the original Hemp seed oil. NEF#4 of Hemp seed oil showed greater protective activity against experimental NASH and IR in rats. Hence, we can consider the nanoemulsion preparations as a useful tool for enhancing the biological action of the hemp seed oil, and further studies are warranted for application of this technique for preparing natural oils aiming at enhancing their activities.
Collapse
|
21
|
Cao P, Chen Q, Shi CX, Wang LW, Gong ZJ. Sirtuin1 attenuates acute liver failure by reducing reactive oxygen species via hypoxia inducible factor 1α. World J Gastroenterol 2022; 28:1798-1813. [PMID: 35633910 PMCID: PMC9099200 DOI: 10.3748/wjg.v28.i17.1798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The occurrence and development of acute liver failure (ALF) is closely related to a series of inflammatory reactions, such as the production of reactive oxygen species (ROS). Hypoxia inducible factor 1α (HIF-1α) is a key factor that regulates oxygen homeostasis and redox, and the stability of HIF-1α is related to the ROS level regulated by Sirtuin (Sirt) family. The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease. However, little is known about the relationship between HIF-1α and Sirt1 in the process of ALF and the molecular mechanism.
AIM To investigate whether HIF-1α may be a target of Sirt1 deacetylation and what the effects on ALF are.
METHODS Mice were administrated lipopolysaccharide (LPS)/D-gal and exposed to hypoxic conditions as animal model, and resveratrol was used as an activator of Sirt1. The cellular model was established with L02 cells stimulated by LPS. N-acetyl-L-cysteine was used to remove ROS, and the expression of Sirt1 was inhibited by nicotinamide. Western blotting was used to detect Sirt1 and HIF-1α activity and related protein expression. The possible signaling pathways involved were analyzed by immunofluorescent staining, co-immunoprecipitation, dihydroethidium staining, and Western blotting.
RESULTS Compared with mice stimulated with LPS alone, the expression of Sirt1 decreased, the level of HIF-1α acetylation increased in hypoxic mice, and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly, which was regulated by HIF-1α, indicating an increase of HIF-1α activity. Under hypoxia, the down-regulation of Sirt1 activated and acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS. The regulation of ROS was partly through peroxisome proliferator-activated receptor alpha or AMP-activated protein kinase. Resveratrol, a Sirt1 activator, effectively relieved ALF aggravated by hypoxia, the production of ROS, and cell apoptosis. It also induced the deacetylation of HIF-1α and inhibited the activity of HIF-1α.
CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
22
|
Buczyńska A, Sidorkiewicz I, Hameed A, Krętowski AJ, Zbucka-Krętowska M. Future Perspectives in Oxidative Stress in Trisomy 13 and 18 Evaluation. J Clin Med 2022; 11:jcm11071787. [PMID: 35407395 PMCID: PMC8999694 DOI: 10.3390/jcm11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Autosomal aneuploidies are the most frequently occurring congenital abnormalities and are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities, and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during cell division. Accumulating evidence has shown that deregulated gene expression resulting from the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes. Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malformations. Therefore, a literature review was undertaken to provide novel insights into the evaluation of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress. Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determination of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses the strengths, limitations, and possible directions for future studies. The progressive unification of trisomy-related research protocols might provide potential medical targets in the future along with the implementation of the foundation of modern prenatal medicine.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Ahsan Hameed
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| |
Collapse
|
23
|
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Zbucka-Krętowska M, Adamska A. Metformin Intervention—A Panacea for Cancer Treatment? Cancers (Basel) 2022; 14:cancers14051336. [PMID: 35267644 PMCID: PMC8909770 DOI: 10.3390/cancers14051336] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism of action and the individual influence of various metabolic pathways related to metformin intervention are under current investigation. The available data suggest that metformin provides many advantages, exhibiting anti-inflammatory, anti-cancer, hepatoprotective, cardioprotective, otoprotective, radioprotective, and radio-sensitizing properties depending on cellular context. This literature review was undertaken to provide novel evidence concerning metformin intervention, with a particular emphasis on cancer treatment and prevention. Undoubtedly, the pleiotropic actions associated with metformin include inhibiting inflammatory processes, increasing antioxidant capacity, and improving glycemic and lipid metabolism. Consequently, these characteristics make metformin an attractive medicament to translate to human trials, the promising results of which were also summarized in this review.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (A.A.); Tel.: +48-85-746-8513 (A.B.); +48-85-746-8660 (A.A.)
| |
Collapse
|
24
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
25
|
Cao P, Chen Q, Shi C, Pei M, Wang L, Gong Z. Pinocembrin ameliorates acute liver failure via activating the Sirt1/PPARα pathway in vitro and in vivo. Eur J Pharmacol 2022; 915:174610. [PMID: 34951978 DOI: 10.1016/j.ejphar.2021.174610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Acute liver failure (ALF) is a life-threatening disease and affects multiple organ systems. Pro-inflammatory factors derived from macrophage plays a key role in septicemia. Pinocembrin is a natural favonoid compound, which can be extracted from honey, propolis and several other plants. Recent investigations demonstrate that Pinocembrin has a variety of pharmacological activities, including anti-inflammatory and antioxidant. To investigate the effects of Pinocembrin on ALF, we explored its possible molecular mechanisms through the experiments in vivo and in vitro. Pre-treatment with Pinocembrin attenuated LPS-induced hepatocyte dysfunction and reduced levels of pro-inflammatory factors and macrophages infiltration. Pinocembrin inhibited the hepatocyte apoptosis and pro-inflammatory reaction of peritoneal macrophages by reducing reactive oxygen species (ROS) via the Sirt1/PPARα signaling pathway. Our study suggests that Pinocembrin might represent a novel therapeutic drug and offers a new method for the treatment of ALF.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
26
|
Khalaf MM, Hassanein EHM, Shalkami AGS, Hemeida RAM, Mohamed WR. Diallyl Disulfide Attenuates Methotrexate-Induced Hepatic Oxidative Injury, Inflammation and Apoptosis and Enhances its Anti-Tumor Activity. Curr Mol Pharmacol 2022; 15:213-226. [PMID: 34042041 DOI: 10.2174/1874467214666210525153111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. OBJECTIVES The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. METHODS Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. RESULTS DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2 - contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF- κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX antitumor efficacy. CONCLUSION DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| |
Collapse
|
27
|
Hassanein EHM, Khader HF, Elmansy RA, Seleem HS, Elfiky M, Mohammedsaleh ZM, Ali FEM, Abd-Elhamid TH. Umbelliferone alleviates hepatic ischemia/reperfusion-induced oxidative stress injury via targeting Keap-1/Nrf-2/ARE and TLR4/NF-κB-p65 signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67863-67879. [PMID: 34268687 DOI: 10.1007/s11356-021-15184-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Umbelliferone (UMB; 7-hydroxycoumarin) is a natural compound that exhibited a diversity of pharmacological activities. Its protective effects against various ischemia/reperfusion (IR) injuries, including heart, kidney, and testis, have been observed. However, their effect on hepatic IR is still not investigated yet. Here, this study was conducted to examine the potential protective role of UMB during the early phase of hepatic IR injury via targeting Keap-1/Nrf-2/ARE and its closely related signaling pathway, TLR4/NF-κB-p65. Experimentally, forty Wistar albino rats were randomly divided into 4 groups: Sham control group (received 1% carboxymethyl cellulose as a vehicle), UMB group (30 mg/kg/day, P.O.), IR group (subjected to complete hepatic IR injury), and IR + UMB group. Our results revealed that oral UMB effectively reduced the serum levels of ALT, AST, ALP, and LDH along with the restoration of oxidant/antioxidant status. At the molecular level, UMB markedly activated Nrf-2 expression and its down-streaming targets: HO-1, NQO1, GCLC, SOD3, and TNXRD1, along with Keap-1 down-regulation. Besides, UMB significantly down-regulated NF-κB-p65 and TLR4 expressions with subsequent decreased TNF-α and IL-1β levels coupled with the up-regulation of the IL-10 level. Finally, biochemical findings were confirmed by attenuation of histopathological changes in liver tissues. Together, UMB is a promising agent for the amelioration of liver tissues against IR-induced oxidative injury through activation of the Keap-1/Nrf-2/ARE signaling pathway along with suppression of its closely related signaling pathways: TLR4/NF-κB-p65. Illustrated diagram explored the prospective underlying protective mechanism of UMB against IR-induced hepatic damage.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Heba F Khader
- Medical Biochemistry Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Rasha A Elmansy
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan S Seleem
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum, Menoufia, Egypt
| | - Mohamed Elfiky
- Anatomy Department, Faculty of Medicine, Menoufia University, Shebin ElKoum, Menoufia, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
28
|
Shalkami AGS, Hassanein EHM, Sayed AM, Mohamed WR, Khalaf MM, Hemeida RAM. Hepatoprotective effects of phytochemicals berberine and umbelliferone against methotrexate-induced hepatic intoxication: experimental studies and in silico evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67593-67607. [PMID: 34258700 DOI: 10.1007/s11356-021-15358-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic drugs are used effectively to manage wide types of malignancies, but their therapeutic use is limited due to their associated hepatic intoxication. The current study sheds light on the effect of phytochemicals berberine (BBR) and umbelliferone (UMB) on methotrexate (MTX)-induced hepatic intoxication. Forty-eight rats were allocated to normal, BBR (50 mg/kg orally for 10 days), UMB (30 mg/kg orally for 10 days), MTX (20 mg/kg at the 5th day), BBR+MTX, and UMB+MTX. With regard to MTX, the results of this investigation reveal potent amelioration of MTX hepatotoxicity by BBR and UMB through reduction of the elevated serum levels of ALT, ALP, AST, and LDH confirmed by the attenuation of histopathological abrasion in liver tissues. BBR and UMB markedly restored antioxidant status. More importantly, BBR resulted in reducing P38 mitogen-activated protein kinase (P38MAPK), nuclear factor kappa-B (NF-κB), and Kelch-like ECH-associated protein 1 (Keap-1) genes and enhanced mRNA expression of Nrf-2 (P < 0.05). Interestingly, in silico studies via molecular docking pinpointed the binding modes of BBR and UMB to the binding pocket residues of P38MAPK, NF-κB, and Keap-1 and demonstrated a promising inhibition of Keap-1, P38MAPK, and NF-κB. BBR and UMB reduced the expression of pro-apoptotic protein Bax and apoptotic protein caspase-3 as well as increased the expression of anti-apoptotic protein Bcl-2. Therefore, BBR and UMB may denote promising therapeutic agents that can avert hepatic intoxication in patients receiving MTX.
Collapse
Affiliation(s)
- Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Menia, 61768, Egypt
| |
Collapse
|
29
|
Mauerhofer C, Grumet L, Schemmer P, Leber B, Stiegler P. Combating Ischemia-Reperfusion Injury with Micronutrients and Natural Compounds during Solid Organ Transplantation: Data of Clinical Trials and Lessons of Preclinical Findings. Int J Mol Sci 2021; 22:10675. [PMID: 34639016 PMCID: PMC8508760 DOI: 10.3390/ijms221910675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Although extended donor criteria grafts bear a higher risk of complications such as graft dysfunction, the exceeding demand requires to extent the pool of potential donors. The risk of complications is highly associated with ischemia-reperfusion injury, a condition characterized by high loads of oxidative stress exceeding antioxidative defense mechanisms. The antioxidative properties, along with other beneficial effects like anti-inflammatory, antiapoptotic or antiarrhythmic effects of several micronutrients and natural compounds, have recently emerged increasing research interest resulting in various preclinical and clinical studies. Preclinical studies reported about ameliorated oxidative stress and inflammatory status, resulting in improved graft survival. Although the majority of clinical studies confirmed these results, reporting about improved recovery and superior organ function, others failed to do so. Yet, only a limited number of micronutrients and natural compounds have been investigated in a (large) clinical trial. Despite some ambiguous clinical results and modest clinical data availability, the vast majority of convincing animal and in vitro data, along with low cost and easy availability, encourage the conductance of future clinical trials. These should implement insights gained from animal data.
Collapse
Affiliation(s)
- Christina Mauerhofer
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Lukas Grumet
- Department of Science and Product Development, pro medico HandelsGmbH, Liebenauer Tangente 6, 8041 Graz, Austria; (C.M.); (L.G.)
| | - Peter Schemmer
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Bettina Leber
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| | - Philipp Stiegler
- Division of Transplant Surgery, Department of Surgery, Medical University, 8036 Graz, Austria; (P.S.); (B.L.)
| |
Collapse
|
30
|
Zhao H, Chen W, Zhu Y, Lou J. Hypoxia promotes pancreatic cancer cell migration, invasion, and epithelial-mesenchymal transition via modulating the FOXO3a/DUSP6/ERK axis. J Gastrointest Oncol 2021; 12:1691-1703. [PMID: 34532120 DOI: 10.21037/jgo-21-359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer (PC) is among the most aggressive types of cancer. Hypoxia has been identified as a key risk factor for cancer progression. The forkhead box (FOX) proteins are multidirectional transcriptional factors that are strongly implicated in malignancies. However, whether FOXO3a, a member of the FOX protein family, is involved in the pro-oncogenic functions of hypoxia in PC has remained largely unelucidated. In this study, we attempted to clarify the role of FOXO3a in metastasis under hypoxic conditions and its underlying mechanism. Methods MTT and flow cytometry assays were performed to detect the cell proliferation and cell cycle distribution respectively. Transwell assays were used to determine the potential of cell migration and invasion. qPCR and western blot assays were used to assess the expression of mRNA and protein. Immunofluorescence assay was performed to evaluate the cellular localization of FOXO3a. FOXO3a overexpression plasmid was constructed to perform the rescue experiment. Results Our data indicated that PANC-1 and SW1990 cells represented enhanced cell migration and invasion abilities under hypoxia, while no statistical differences in cell proliferation and cell cycle distribution were observed. Hypoxia upregulated the messenger RNA (mRNA) and protein expressions of HIF-1α, FOXO3a, and the key epithelial-mesenchymal transition (EMT)-related (EMT) molecules N-cadherin and vimentin, as well as the phosphorylation of FOXO3a. Interestingly, hypoxia promoted the extranuclear localization of FOXO3a. Overexpression of FOXO3a not only significantly decreased the invasion, migration, and EMT of PC cell lines, but also reversed hypoxia-induced extranuclear localization. Finally, FOXO3a might act as a tumor suppressor in PC by inhibiting the ERK signaling pathway by inducing DUSP6 expression, and the ERK activator fisetin could effectively attenuate the inhibitory role of FOXO3a on ERK. Conclusions Taken together, our results identified that hypoxia-induced extranuclear localization of FOXO3a promoted cell migration and invasion of human PC by modulating the DUSP6/ERK pathway.
Collapse
Affiliation(s)
- Hua Zhao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Lou
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Zhao L, Tian L, Wang S, Yang W, Lu X, Zhu C. Levosimendan in rats decreases acute kidney injury after cardiopulmonary resuscitation by improving mitochondrial dysfunction. Transl Androl Urol 2021; 10:3010-3020. [PMID: 34430404 PMCID: PMC8350249 DOI: 10.21037/tau-21-443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background Acute kidney injury (AKI), the most common complication after cardiac resuscitation, is highly prevalent and harmful. There is increasing evidence that levosimendan can improve cardiac output, increase renal blood flow, and prevent AKI. As a novel calcium sensitizer, levosimendan may exert its protective effect via mitochondria. Methods Rat models of asphyxia-induced cardiac arrest and cardiopulmonary resuscitation (CPR) were set up. Thirty healthy adult male SD rats were randomly divided into CPR group (CPR group, n=10), levosimendan-treated group (levo group, n=10), and sham-operated group (sham group, n=10). Twelve hours after CPR, serum renal function indicators were measured, the kidney injury and mitochondrial morphological changes were observed. Oxygen uptake of the mitochondria, mitochondrial adenosine triphosphate (ATP) and mitochondrial free Ca2+ concentration were measured. Oxidative stress-related indicator levels in rat kidney tissues were further detected to analyze the differences in apoptosis rates among these three groups. Mitochondrial optic atrophy 1 (Opa1), dynamin-related protein 1 (Drp1), and apoptosis-related proteins were detected using Western blotting. Results Compared with the sham group, the CPR group had a significant increase in renal tissue damage. PAS staining and HE stains confirmed that CPR led to renal histopathological damage and destruction of the mitochondrial structure. Levosimendan improved the histopathological and ultrastructural damages of kidneys. Further analysis revealed that mitochondrial ATP content, NADH dehydrogenase, succinate dehydrogenase/cytochrome C oxidase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (CSH-Px) decreased. Free Ca2+ concentration and malondialdehyde (MDA) significantly increased (all P<0.05) in the kidney tissues of rats in the CPR group. However, mitochondrial ATP content, NADH dehydrogenase, succinate dehydrogenase/cytochrome C oxidase, SOD, CAT, and CSH-Px increased, whereas free Ca2+ concentration and MDA decreased (all P<0.05) in the levo group. The apoptosis rate increased in the CPR group. There were significantly increased levels of Drp1 protein levels, and significantly decreased Opa1 expression (all P<0.05). However, the levo group showed the opposite effects (all P<0.05). Conclusions Levosimendan can alleviate AKI following CPR, which may be achieved by improving mitochondrial dysfunction and suppressing the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Li Zhao
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Tian
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Wang
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqiang Yang
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoye Lu
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changqing Zhu
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Tejchman K, Kotfis K, Sieńko J. Biomarkers and Mechanisms of Oxidative Stress-Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int J Mol Sci 2021; 22:ijms22158010. [PMID: 34360776 PMCID: PMC8347360 DOI: 10.3390/ijms22158010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between pro- and antioxidants that adversely influences the organism in various mechanisms and on many levels. Oxidative damage occurring concomitantly in many cellular structures may cause a deterioration of function, including apoptosis and necrosis. The damage leaves a molecular “footprint”, which can be detected by specific methodology, using certain oxidative stress biomarkers. There is an intimate relationship between oxidative stress, inflammation, and functional impairment, resulting in various diseases affecting the entire human body. In the current narrative review, we strengthen the connection between oxidative stress mechanisms and their active compounds, emphasizing kidney damage and renal transplantation. An analysis of reactive oxygen species (ROS), antioxidants, products of peroxidation, and finally signaling pathways gives a lot of promising data that potentially will modify cell responses on many levels, including gene expression. Oxidative damage, stress, and ROS are still intensively exploited research subjects. We discuss compounds mentioned earlier as biomarkers of oxidative stress and present their role documented during the last 20 years of research. The following keywords and MeSH terms were used in the search: oxidative stress, kidney, transplantation, ischemia-reperfusion injury, IRI, biomarkers, peroxidation, and treatment.
Collapse
Affiliation(s)
- Karol Tejchman
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48914661144
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.T.); (J.S.)
| |
Collapse
|
33
|
Ali FEM, Ahmed SF, Eltrawy AH, Yousef RS, Ali HS, Mahmoud AR, Abd-Elhamid TH. Pretreatment with Coenzyme Q10 Combined with Aescin Protects against Sepsis-Induced Acute Lung Injury. Cells Tissues Organs 2021; 210:195-217. [PMID: 34280918 DOI: 10.1159/000516192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Salwa F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reda S Yousef
- Department of Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
34
|
Zhou L, Yang X, Shu S, Wang S, Guo F, Yin Y, Zhou W, Han H, Chai X. Sufentanil Protects the Liver from Ischemia/Reperfusion-Induced Inflammation and Apoptosis by Inhibiting ATF4-Induced TP53BP2 Expression. Inflammation 2021; 44:1160-1174. [PMID: 33751357 DOI: 10.1007/s10753-020-01410-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion (I/R) injury is a pathological process that often occurs during liver and trauma surgery. This study aimed to investigate the protective effect and potential mechanisms of sufentanil on hepatic I/R injury. I/R rat model and hypoxic/reoxygenation (H/R)-induced buffalo rat liver (BRL)-3A cell model were established. Following pretreatment with sufentanil, the enzymatic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rat serum and the changes of hepatic histopathology were evaluated to track the extent of liver injury. The levels of inflammatory factors were determined with ELISA kits and RT-qPCR. The infiltration of macrophages was assessed after detecting monocyte chemoattractant protein 1 (MCP-1) and F4/80 expression. Additionally, apoptosis was measured by means of TUNEL staining, and gene expression related to apoptosis was examined using RT-qPCR and western blotting. Then, TP53BP2 was overexpressed in BRL-3A cells exposed to H/R condition to evaluate whether sufentanil defended the liver against injury by regulating TP53BP2 expression. Moreover, the potential binding site of ATF4 on the TP53BP2 promoter was analyzed using JASPAR databases and verified by chromosomal immunoprecipitation (ChIP) assay. Furthermore, TP53BP2 expression and endoplasmic reticulum stress (ERS)-related protein levels were determined after ATF4 was overexpressed in sufentanil-treated BRL-3A cells. Results revealed that sufentanil significantly improved hepatic I/R injury, decreased the levels of inflammatory factors, and alleviated hepatocyte apoptosis. Notably, upregulated TP53BP2 expression was observed in hepatic tissues, and TP53BP2 overexpression markedly reversed the protective effects of sufentanil on the inflammation and apoptosis in H/R-stimulated BRL-3A cells. Additionally, ATF4 was confirmed to combine with the TP53BP2 promoter. ATF4 upregulation attenuated the inhibitory effects of sufentanil on the expression of TP53BP2 and ERS-associated proteins. These findings demonstrated that sufentanil protects the liver from inflammation and apoptosis injury induced by I/R by inhibiting ATF4 expression and further suppressing TP53BP2 expression, suggesting a promising therapeutic candidate for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Shuhua Shu
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Sheng Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Fenglin Guo
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Ying Yin
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Weide Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Han Han
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China.
| |
Collapse
|
35
|
Jiang Y, Chen D, Gong Q, Xu Q, Pan D, Lu F, Tang Q. Elucidation of SIRT-1/PGC-1α-associated mitochondrial dysfunction and autophagy in nonalcoholic fatty liver disease. Lipids Health Dis 2021; 20:40. [PMID: 33902605 PMCID: PMC8077826 DOI: 10.1186/s12944-021-01461-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) can lead to chronic liver diseases associated with mitochondrial damages. However, the exact mechanisms involved in the etiology of the disease are not clear. Methods To gain new insights, the changes affecting sirtuin 1 (SIRT-1) during liver fat accumulation was investigated in a NAFLD mouse model. In addition, the in vitro research investigated the regulation operated by SIRT-1 on mitochondrial structures, biogenesis, functions, and autophagy. Results In mice NAFLD, high-fat-diet (HFD) increased body weight gain, upregulated serum total cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, blood glucose, insulin levels, and liver malondialdehyde, and decreased liver superoxide dismutase activity. In liver, the levels of SIRT-1 and peroxisome proliferator-activated receptor-gamma coactivator -1α (PGC-1α) decreased. The expression of peroxisome proliferator-activated receptor-α and Beclin-1 proteins was also reduced, while p62/SQSTM1 expression increased. These results demonstrated SIRT-1 impairment in mouse NAFLD. In a well-established NAFLD cell model, exposure of the HepG2 hepatocyte cell line to oleic acid (OA) for 48 h caused viability reduction, apoptosis, lipid accumulation, and reactive oxygen species production. Disturbance of SIRT-1 expression affected mitochondria. Pre-treatment with Tenovin-6, a SIRT-1 inhibitor, aggravated the effect of OA on hepG2, while this effect was reversed by CAY10602, a SIRT-1 activator. Further investigation demonstrated that SIRT-1 activity was involved in mitochondrial biogenesis through PGC-1α and participated to the balance of autophagy regulatory proteins. Conclusion In conclusion, in high-fat conditions, SIRT-1 regulates multiple cellular properties by influencing on mitochondrial physiology and lipid autophagy via the PGC-1α pathway. The SIRT-1/PGC-1α pathway could be targeted to develop new NAFLD therapeutic strategies.
Collapse
Affiliation(s)
- Yan Jiang
- Medical College of Guangxi University, Nanning, 530004, Guangxi, China.,YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Duankai Chen
- YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qiming Gong
- YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qunqing Xu
- YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Dong Pan
- YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Feiyan Lu
- YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qianli Tang
- Medical College of Guangxi University, Nanning, 530004, Guangxi, China. .,YouJiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
36
|
Xing X, Zhang J, Zhang J, Wang Y, Wang J, Kang J, Quan F, Su J, Zhang Y. Coenzyme Q10 supplement rescues postovulatory oocyte aging by regulating SIRT4 expression. Curr Mol Pharmacol 2021; 15:190-203. [PMID: 33881976 DOI: 10.2174/1874467214666210420112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND High-quality of the oocyte is crucial for embryo development and the success of human assisted reproduction. The postovulatory aged oocytes lose the developmental competence with mitochondrial dysfunction and oxidative stress. Coenzyme Q10 (CoQ10) is widely distributed in the membranes of cells, and has an important role in the mitochondrial respiration chain, against oxidative stress and modulation of gene expression. OBJECTIVE To investigate the functions and mechanisms of CoQ10 on delaying postovulatory oocyte aging. METHODS Quantitative real-time PCR and Immunofluorescence staining were used to determine the expression patterns of the biogenesis genes of CoQ10 in postovulatory aged oocytes compared with fresh oocytes. The mitochondrial function, apoptosis, reactive oxygen species (ROS) accumulation and spindle abnormalities were investigated after treatment with 10 μM CoQ10 in aged groups. SIRT4 siRNA or capped RNA was injected into oocytes to investigate the function of SIRT4 on postovulatory oocyte aging and the relationship between CoQ10 and SIRT4. RESULTS Multiple CoQ10 biosynthesis enzymes are insufficient, and supplement of CoQ10 can improve oocyte quality and elevate the development competency of postovulatory aged oocytes. CoQ10 can attenuate the aging-induced abnormalities including mitochondrial dysfunction, ROS accumulation, spindle abnormalities, and apoptosis in postovulatory aged oocytes. Furthermore, SIRT4, which was first found to be up-regulated in postovulatory aged oocytes, decreased following CoQ10 treatment. Finally, knockdown of SIRT4 can rescue aging-induced dysfunction of mitochondria, and the efficiency of CoQ10 rescuing dysfunction of mitochondria can be weakened by SIRT4 overexpression. CONCLUSION Supplement of CoQ10 protects oocytes from postovulatory aging by inhibiting SIRT4increase.
Collapse
Affiliation(s)
- Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinjing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
37
|
Elmansy RA, Seleem HS, Mahmoud AR, Hassanein EHM, Ali FEM. Rebamipide potentially mitigates methotrexate-induced nephrotoxicity via inhibition of oxidative stress and inflammation: A molecular and histochemical study. Anat Rec (Hoboken) 2021; 304:647-661. [PMID: 32589351 DOI: 10.1002/ar.24482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
Methotrexate (MTX) is a widely used chemotherapeutic agent; nevertheless, the nephrotoxicity associated with its use has limited its clinical use. Rebamipide (REB) is a gastro-protective agent with diverse promising biological activities. Here, we investigated the renoprotective effects of REB against MTX-induced nephrotoxicity in rats. Male Wistar rats were allocated into four groups: the normal control group, the REB group (100 mg kg-1 day-1 , PO, for 12 days), the MTX group (which received a single injection of 20 mg/kg, ip), and the REB + MTX group (which received 100 mg kg-1 day-1 REB for 7 days before and 5 days after being injected with 20 mg/kg MTX). Interestingly, MTX triggered kidney injury, characterized by renal dysfunction along with histopathological alterations. Moreover, increased reactive oxygen species level and inflammatory response were detected in the kidney of MTX-treated rats. However, REB prevented MTX-induced oxidative kidney injury and boosted an antioxidant balance. Mechanistically, REB markedly activated the NRF-2 protein and upregulated the expression of both SIRT-1 and FOXO-3 genes. Additionally, REB administration strongly inhibited the inflammatory response by downregulating both NF-κB-p65 and TLR-4. Finally, the coadministration of REB and MTX activated the mTOR/PI3K/AKT signaling pathway. Simultaneously, REB treatment attenuated the reduction in glomerular size, the widening of the capsular spaces, and the tubular cell damage due to MTX administration. Taken together, these results indicate the potential of REB as adjuvant therapy to prevent nephrotoxicity in patients receiving MTX treatment.
Collapse
Affiliation(s)
- Rasha A Elmansy
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.,Histology Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amany R Mahmoud
- Anatomy Unit, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia.,Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
38
|
Wu F, Wang W, Duan Y, Guo J, Li G, Ma T. Effect of Parecoxib Sodium on Myocardial Ischemia-Reperfusion Injury Rats. Med Sci Monit 2021; 27:e928205. [PMID: 33395402 PMCID: PMC7791896 DOI: 10.12659/msm.928205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to explore the effect of parecoxib sodium on myocardial ischemia-reperfusion (I/R) injury rats and its mechanism. MATERIAL AND METHODS The coronary artery of Sprague-Dawley rats was occluded for 6 h of myocardial ischemia, followed by reperfusion for 30 min (I/R group). Before ischemia, parecoxib sodium (10 mg/kg) was intraperitoneally injected twice a day for 3 consecutive days, followed by reperfusion for 6 h (I/R+Pare group). The cardiac function and changes in the infarction area were evaluated via echocardiography in each group. The differences in the expressions of apoptosis-related proteins were determined via immunohistochemistry and western blotting. Then, the percentage of reactive oxygen species (ROS)⁺ cells and the content of lipid peroxide were detected, based on which the degree of oxidative stress was evaluated. Next, the expressions of nuclear factor-kappaB (NF-kappaB) and nuclear factor E2-related factor 2 (Nrf-2) signaling pathways and downstream target genes were determined using real-time quantitative polymerase chain reaction (PCR). RESULTS After treatment with parecoxib sodium, the cardiac function of I/R injury rats was restored, and the infarction area and apoptosis level were reduced (P<0.05). Parecoxib sodium reduced the levels of ROS and lipid peroxidation in myocardial I/R injury rats, thereby weakening oxidative stress. It also regulated the redox imbalance caused by I/R injury through regulating NF-kappaB and Nrf-2 (P<0.01). In addition, after treatment with parecoxib sodium, NF-kappaB was significantly downregulated, while Nrf-2 was upregulated, and the content of proinflammatory cytokines was obviously reduced (P<0.01). CONCLUSIONS Parecoxib sodium exerts a protective effect against myocardial I/R injury through regulating antioxidant and inflammatory mechanisms.
Collapse
Affiliation(s)
- Fangyong Wu
- Department of Anesthesiology, Eastern Medical District of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, P.R. China
| | - Wei Wang
- Department of Anesthesiology, People’s Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Yingying Duan
- Department of Anesthesiology, Eastern Medical District of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, P.R. China
| | - Jia Guo
- Department of Anesthesiology, Eastern Medical District of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, P.R. China
| | - Guanhua Li
- Department of Anesthesiology, People’s Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Tao Ma
- Department of Anesthesiology, People’s Liberation Army (PLA) Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
39
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
40
|
Abdel-Wahab BA, Ali FEM, Alkahtani SA, Alshabi AM, Mahnashi MH, Hassanein EHM. Hepatoprotective effect of rebamipide against methotrexate-induced hepatic intoxication: role of Nrf2/GSK-3β, NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2 signaling pathways. Immunopharmacol Immunotoxicol 2020; 42:493-503. [PMID: 32865051 DOI: 10.1080/08923973.2020.1811307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The fact that methotrexate (MTX) is hepatotoxic is an important reason to limit its clinical use. Rebamipide (REB) has antioxidant and anti-inflammatory properties and is useful for the treatment of gastro-duodenal ulcers. This study investigated the impact and protective mechanisms of REB against MTX-induced hepatotoxicity in rats. MATERIALS AND METHODS Animals were divided into four groups of six rats each: a control group, REB group (REB 100 mg/kg/day, orally), MTX control group (20 mg/kg, single i.p.), and MTX + REB group. RESULTS The administration of MTX induced marked hepatic injury in the form of hepatocyte inflammatory swelling, degeneration, apoptosis, and focal necrosis. In parallel, our biochemical investigations revealed a marked hepatic dysfunction associated with the disturbance of the oxidant/antioxidant balance in the group treated with only MTX. Moreover, MTX led to the down-regulation of the hepatic Nrf2 and Bcl-2 expressions along with a marked elevation in the hepatic NF-κβ-p65, GSK-3β, JAK1, STAT3, PUMA, and Bax expressions. On the other hand, co-treatment with REB significantly ameliorated the aforementioned histopathological, biochemical, and molecular defects caused by MTX treatment. CONCLUSION the outcomes of the present study showed REB's ability to protect from hepatic injury induced by MTX, possibly through its antioxidant, anti-inflammatory, and anti-apoptotic properties. These effects could be attributed to REB's ability to modulate, at least in part, the Nrf2/GSK-3β,NF-κβ-p65/JAK1/STAT3, and PUMA/Bax/Bcl-2signaling pathways.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia.,Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali M Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
41
|
Li S, Zhang M, Zhang B. MTMR14 protects against hepatic ischemia-reperfusion injury through interacting with AKT signaling in vivo and in vitro. Biomed Pharmacother 2020; 129:110455. [PMID: 32768948 DOI: 10.1016/j.biopha.2020.110455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is characterized by severe inflammation and cell death. However, very few effective therapies are presently available for hepatic IR injury treatment. Here, we reported a protective function and the underlying mechanism of myotubularin-related protein 14 (MTMR14) during hepatic IR injury. Hepatocyte-specific MTMR14 knockout (HKO) and transgenic (TG) mice were subjected to hepatic IR operation to explore MTMR14 function in vivo. Primary hepatocytes isolated from MTMR14-HKO and MTMR14-TG mice were subjected to hypoxia/reoxygenation (HR) insult in vitro. We found that MTMR14 expression in liver tissues from individuals with hepatic IR was markedly decreased, and similar results were detected in mice with hepatic IR surgery. MTMR14-TG mice following hepatic IR operation had obviously ameliorated liver pathological changes, along with improved hepatic dysfunction, which was proved by the decreased serum alanine amino transferase (ALT) and aspartate amino transferase (AST) levels. MTMR14-HKO and MTMR14-TG animal models indicated that MTMR14 alleviated cell death and inflammatory response. In addition, MTMR14 inhibited nuclear transcription factor κB (NF-κB) signaling. Of note, promoting MTMR14 expression improved phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) pathway through a physical interaction with AKT, subsequently reducing cell death and inflammation. Therefore, MTMR14 is a protective factor during hepatic IR injury, and the MTMR14/AKT signaling is involved the pathogenesis hepatic IR injury. Improvement of this axis might be a novel therapeutic strategy for the prevention of this pathological process.
Collapse
Affiliation(s)
- Shufang Li
- Liver Department, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Meng Zhang
- Department of Vascular Surgery, Yidu Central Hospital of Weifang, Weifang 262500, China
| | - Bei Zhang
- Department of Intervention Radiology (Department of Pain), Tangdu Hospital, the Forth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
42
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [PMID: 32171552 DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|