1
|
Puente-Marin S, Cazorla D, Chico V, Coll J, Ortega-Villaizan M. Innate immune response of rainbow trout erythrocytes to spinycterins expressing a downsized viral fragment of viral haemorrhagic septicaemia virus. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 568:739303. [PMID: 38533126 PMCID: PMC10961846 DOI: 10.1016/j.aquaculture.2023.739303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 03/28/2024]
Abstract
Recent studies have reported on the importance of RBCs in fish responses to viral infections and DNA vaccines. Surface-displaying recombinant bacterins (spinycterins) are a safe and adaptable prototype for viral vaccination of fish and represent an alternative method of aquaculture prophylaxis, since have been reported to enhance fish immune response. We evaluated the innate immune response of rainbow trout (Oncorhynchus mykiss) red blood cells (RBCs), head kidney, and spleen to spinycterins expressing a fragment of the glycoprotein G of viral haemorrhagic septicemia virus (VHSV), one of the most devastating world-wide diseases in farmed salmonids. We first selected an immunorelevant downsized viral fragment of VHSV glycoprotein G (frg16252-450). Then, spinycterins expressing frg16252-450 fused to Nmistic anchor-motif (Nmistic+frg16252-450) were compared to spinycterins expressing frg16252-450 internally without the anchor motif. Nmistic+frg16252-450 spinycterins showed increased attachment to RBCs in vitro and modulated the expression of interferon- and antigen presentation-related genes in RBCs in vitro and in vivo, after intravenous injection. In contrast, the head kidney and spleen of fish injected with frg16252-450, but not Nmistic+frg16252-450, spinycterins demonstrated upregulation of interferon and antigen-presenting genes. Intravenous injection of Nmistic+frg16252-450 spinycterins resulted in a higher innate immune response in RBCs while frg16252-450 spinycterins increased the immune response in head kidney and spleen. Although more studies are required to evaluate the practicality of using spinycterins as fish viral vaccines, these results highlight the important contribution of RBCs to the fish innate immune response to antiviral prophylactics.
Collapse
Affiliation(s)
- S. Puente-Marin
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - D. Cazorla
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - V. Chico
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - J. Coll
- Instituto Nacional de Investigación y Tecnología Agrarias y Alimentarias, Dpto. Biotecnología. INIA, crt.Coruña km 7, 20040 Madrid, Spain
| | - M. Ortega-Villaizan
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| |
Collapse
|
2
|
Verkhovskii R, Ermakov A, Grishin O, Makarkin MA, Kozhevnikov I, Makhortov M, Kozlova A, Salem S, Tuchin V, Bratashov D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022; 27:6073. [PMID: 36144805 PMCID: PMC9501256 DOI: 10.3390/molecules27186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.
Collapse
Affiliation(s)
- Roman Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Alexey Ermakov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Oleg Grishin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail A. Makarkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Ilya Kozhevnikov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail Makhortov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Anastasiia Kozlova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Samia Salem
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Department of Physics, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Valery Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Ave., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
- Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 119071 Moscow, Russia
| | - Daniil Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| |
Collapse
|
3
|
Liang Y, Ding R, Wang H, Liu L, He J, Tao Y, Zhao Z, Zhang J, Wang A, Sun K, Li Y, Shi Y. Orally administered intelligent self-ablating nanoparticles: a new approach to improve drug cellular uptake and intestinal absorption. Drug Deliv 2022; 29:305-315. [PMID: 35037529 PMCID: PMC8765251 DOI: 10.1080/10717544.2021.2023704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oral drug delivery to treat diabetes is being increasingly researched. The mucus and the epithelial cell layers hinder drug delivery. We designed a self-ablating nanoparticle to achieve smart oral delivery to overcome the gastrointestinal barrier. We used the zwitterionic dilauroyl phosphatidylcholine, which exhibits a high affinity toward Oligopeptide transporter 1, to modify poly(lactic-co-glycolic acid) nanoparticles and load hemagglutinin-2 peptide to facilitate its escape from lysosomes. Nanoparticles exhibit a core–shell structure, the lipid layer is degraded by the lysosomes when the nanoparticles are captured by lysosomes, then the inner core of the nanoparticles gets exposed. The results revealed that the self-ablating nanoparticles exhibited higher encapsulation ability than the self-assembled nanoparticles (77% vs 64%) and with better stability. Quantitative cellular uptake, cellular uptake mechanisms, and trans-monolayer cellular were studied, and the results revealed that the cellular uptake achieved using the self-ablating nanoparticles was higher than self-assembling nanoparticles, and the number of uptake pathways via which the self-ablating nanoparticles functioned were higher than the self-assembling nanoparticles. Intestinal mucus permeation, in vivo intestinal circulation, was studied, and the results revealed that the small self-assembling nanoparticles exhibit a good extent of intestinal uptake in the presence of mucus. In vitro flip-flop, intestinal circulation revealed that the uptake of the self-ablating nanoparticles was 1.20 times higher than the self-assembled nanoparticles. Pharmacokinetic study and the pharmacodynamic study showed that the bioavailability and hypoglycemic effect of self-ablating nanoparticles were better than self-assembled nanoparticles.
Collapse
Affiliation(s)
- Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Ruihuan Ding
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Huihui Wang
- School of Life Science, Yantai University, Yantai, P. R. China
| | - Lanze Liu
- School of Life Science, Yantai University, Yantai, P. R. China
| | - Jibiao He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Yuping Tao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Zhenyu Zhao
- School of Life Science, Yantai University, Yantai, P. R. China
| | - Jie Zhang
- School of Life Science, Yantai University, Yantai, P. R. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P. R. China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, P. R. China
| | - Yanan Shi
- School of Life Science, Yantai University, Yantai, P. R. China
| |
Collapse
|
4
|
Fu S, Ding M, Wang J, Yin X, Zhou E, Kong L, Tu X, Guo Z, Wang A, Huang Y, Ye J. Identification and functional characterization of three caspases in Takifugu obscurus in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:252-262. [PMID: 32735858 DOI: 10.1016/j.fsi.2020.07.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Caspases are evolutionarily conserved proteases, which are inextricably linked with the apoptosis and immune system in mammals. However, the expression pattern and function of some caspases remain largely unknown in pufferfish. In this study, three different pufferfish caspases (caspase-2 (Pfcasp-2), caspase-3 (Pfcasp-3), and caspase-8 (Pfcasp-8)) were characterized, and their expression patterns and functions were determined following Aeromonas hydrophila infection. The open reading frames of Pfcasp-2, -3, and -8 are 1,320, 846, and 1455 bp, respectively. Analyses of sequence alignment and phylogenetic tree showed that casp-2, -3, and -8 share 52%-65%, 33%-40%, 63%-78% overall sequence identities with those of other vertebrates, respectively. 3D structures of Pfcasp-2, -3, and -8 enjoy conservation in core area together, while each owns a distinctive profile. Comparisons of deduced amino acid sequences indicated that Pfcaspases possessed the caspase domain and conserved active sites like 'HG' and 'QACXG' (X for R or G). qRT-PCR results revealed that Pfcasp-2, -3, and -8 were expressed constitutively in a wide range of organs, especially in immune-related organs including whole blood and kidney. In vitro, the expressions of the three caspases (Pfcasp-2, 3, and -8) and immune-related genes (IgM and IL-8) were significantly up-regulated in kidney leukocytes after A. Hydrophila challenge and inhibitors treatment. The expressions of Pfcasp-2 and Pfcasp-3 were successfully inhibited in the kidney leukocytes by Ac-DEVD-CHO (an inhibitor to caspase-3), but the expression of Pfcasp-8 was not affected. Cellular localization analysis showed that the distribution of Pfcasp-2, -3, and -8 was in cytoplasm. Further, overexpression of Pfcasp-2, -3, or -8 was found to cause DNA damage and apoptosis, suggesting that three caspases may be related to apoptosis and mediate different apoptosis pathways in pufferfish. Moreover, the expressions of these caspases were also up-regulated in whole blood and kidney after A. hydrophila challenge, indicating their possible involvement in the immune response against A. hydrophia stimulation. Taken together, the results of this study suggest that the caspase-2,-3, and -8 may play an important role in the apoptosis and immune response in pufferfish.
Collapse
Affiliation(s)
- Shengli Fu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Mingmei Ding
- School of medicine, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Junru Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Enxu Zhou
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Linghe Kong
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao Tu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
5
|
Transcriptome Analysis of Paralichthys olivaceus Erythrocytes Reveals Profound Immune Responses Induced by Edwardsiella tarda Infection. Int J Mol Sci 2020; 21:ijms21093094. [PMID: 32353932 PMCID: PMC7247156 DOI: 10.3390/ijms21093094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike mammalian red blood cells (RBCs), fish RBCs are nucleated and thus capable of gene expression. Japanese flounder (Paralichthys olivaceus) is a species of marine fish with important economic values. Flounder are susceptible to Edwardsiella tarda, a severe bacterial pathogen that is able to infect and survive in flounder phagocytes. However, the infectivity of and the immune response induced by E. tarda in flounder RBCs are unclear. In the present research, we found that E. tarda was able to invade and replicate inside flounder RBCs in both in vitro and in vivo infections. To investigate the immune response induced by E. tarda in RBCs, transcriptome analysis of the spleen RBCs of flounder challenged with E. tarda was performed. Six sequencing libraries were constructed, and an average of 43 million clean reads per library were obtained, with 85% of the reads being successfully mapped to the genome of flounder. A total of 1720 differentially expressed genes (DEGs) were identified in E. tarda-infected fish. The DEGs were significantly enriched in diverse Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially those associated with immunity, disease, and infection. Ninety-one key DEGs involved in 12 immune-related pathways were found to form extensive interaction networks. Twenty-one genes that constituted the hub of the networks were further identified, which were highly regulated by E. tarda and involved in a number of immune processes, notably pathogen recognition and signal transduction, antigen processing and presentation, inflammation, and splicing. These results provide new insights into the immune role of flounder RBCs during bacterial infection.
Collapse
|