1
|
Wu F, Zhang P, Zhou G. The involvement of EGR1 in neuron apoptosis in the in vitro model of spinal cord injury via BTG2 up-regulation. Neurol Res 2023; 45:646-654. [PMID: 36759943 DOI: 10.1080/01616412.2023.2176633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVE EGR1 has been implicated in the progression of spinal cord injury (SCI). Nevertheless, its specific mechanism in SCI remains to be investigated. Hence, this study explored the potential mechanism of EGR1 in SCI by focusing on neuron apoptosis. METHODS H2O2 was utilized to treat rat neurons-dorsal spinal cord (RN-dsc) for the construction of an in vitro model of SCI. Afterwards, cell survival, apoptosis, and LDH leakage were detected to evaluate the injury degree of H2O2-treated RN-dsc. The expression of apoptosis-related proteins was also measured. Additionally, EGR1 was silenced and/or BTG2 was overexpressed in RN-dsc before H2O2 treatment to assess the impacts of EGR1 and BTG2 on H2O2-induced RN-dsc. Jasper online website was utilized to predict binding sites of EGR1 on BTG2, and dual-luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays were utilized to verify the binding between EGR1 and BTG2. RESULTS H2O2 treatment suppressed survival and promoted apoptosis in RN-dsc, accompanied by upregulated LDH, Bax, and cleaved-caspase-3 and down-regulated Bcl-2. Moreover, EGR1 and BTG2 were up-regulated in H2O2-induced RN-dsc. Mechanistically, EGR1 was bound to the promoter of BTG2 to transcriptionally activate BTG2. EGR1 knockdown diminished apoptosis and LDH, Bax, and cleaved-caspase-3 levels while elevating survival and Bcl-2 levels in H2O2-induced RN-dsc. These effects of EGR1 knockdown were abrogated by further BTG2 overexpression. DISCUSSION Conclusively, EGR1 promotes H2O2-induced apoptosis in RN-dsc by activating BTG2 transcription.
Collapse
Affiliation(s)
- Fangqian Wu
- Department of Orthopedics (Spine Surgery), Jiangxi Fuzhou First People's Hospital, Fuzhou, Jiangxi, P.R. China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital (The First Affiliated Hospital of Nanchang Medical College), Nanchang, Jiangxi, P.R. China
| | - Guohui Zhou
- Department of Orthopedics (Spine Surgery), Jiangxi Fuzhou First People's Hospital, Fuzhou, Jiangxi, P.R. China
| |
Collapse
|
2
|
Antropova E, Khlebodarova T, Demenkov P, Venzel A, Ivanisenko N, Gavrilenko A, Ivanisenko T, Adamovskaya A, Revva P, Lavrik I, Ivanisenko V. Computer analysis of regulation of hepatocarcinoma marker genes hypermethylated by HCV proteins. Vavilovskii Zhurnal Genet Selektsii 2022; 26:733-742. [PMID: 36714033 PMCID: PMC9840909 DOI: 10.18699/vjgb-22-89] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a risk factor that leads to hepatocellular carcinoma (HCC) development. Epigenetic changes are known to play an important role in the molecular genetic mechanisms of virus-induced oncogenesis. Aberrant DNA methylation is a mediator of epigenetic changes that are closely associated with the HCC pathogenesis and considered a biomarker for its early diagnosis. The ANDSystem software package was used to reconstruct and evaluate the statistical significance of the pathways HCV could potentially use to regulate 32 hypermethylated genes in HCC, including both oncosuppressor and protumorigenic ones identified by genome-wide analysis of DNA methylation. The reconstructed pathways included those affecting protein-protein interactions (PPI), gene expression, protein activity, stability, and transport regulations, the expression regulation pathways being statistically significant. It has been shown that 8 out of 10 HCV proteins were involved in these pathways, the HCV NS3 protein being implicated in the largest number of regulatory pathways. NS3 was associated with the regulation of 5 tumor-suppressor genes, which may be the evidence of its central role in HCC pathogenesis. Analysis of the reconstructed pathways has demonstrated that following the transcription factor inhibition caused by binding to viral proteins, the expression of a number of oncosuppressors (WT1, MGMT, SOCS1, P53) was suppressed, while the expression of others (RASF1, RUNX3, WIF1, DAPK1) was activated. Thus, the performed gene-network reconstruction has shown that HCV proteins can influence not only the methylation status of oncosuppressor genes, but also their transcriptional regulation. The results obtained can be used in the search for pharmacological targets to develop new drugs against HCV-induced HCC.
Collapse
Affiliation(s)
- E.A. Antropova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, Russia
| | - T.M. Khlebodarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - P.S. Demenkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.S. Venzel
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - N.V. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.D. Gavrilenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - T.V. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - A.V. Adamovskaya
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| | - P.M. Revva
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - I.N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - V.A. Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Scences, Novosibirsk, RussiaKurchatov Genomic Center of ICG SB RAS, Novosibirsk, RussiaNovosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Morán-Serradilla C, Angulo-Elizari E, Henriquez-Figuereo A, Sanmartín C, Sharma AK, Plano D. Seleno-Metabolites and Their Precursors: A New Dawn for Several Illnesses? Metabolites 2022; 12:874. [PMID: 36144278 PMCID: PMC9504997 DOI: 10.3390/metabo12090874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023] Open
Abstract
Selenium (Se) is an essential element for human health as it is involved in different physiological functions. Moreover, a great number of Se compounds can be considered potential agents in the prevention and treatment of some diseases. It is widely recognized that Se activity is related to multiple factors, such as its chemical form, dose, and its metabolism. The understanding of its complex biochemistry is necessary as it has been demonstrated that the metabolites of the Se molecules used to be the ones that exert the biological activity. Therefore, the aim of this review is to summarize the recent information about its most remarkable metabolites of acknowledged biological effects: hydrogen selenide (HSe-/H2Se) and methylselenol (CH3SeH). In addition, special attention is paid to the main seleno-containing precursors of these derivatives and their role in different pathologies.
Collapse
Affiliation(s)
- Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
4
|
Zhang D, Zhang D, Wang C, Zhang R, Li Q, Xiong Y. Mechanism of DNA methylation-mediated downregulation of O6-Methylguanine-DNA methyltransferase in cartilage injury of Kashin-Beck Disease. Rheumatology (Oxford) 2021; 61:3471-3480. [PMID: 34888649 DOI: 10.1093/rheumatology/keab913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Kashin-Beck Disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, shRNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS MGMT protein expression and mRNA levels were decreased (p = 0.02, p = 0.007) and promoter methylation was increased (p = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (p = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all p < 0.0001). Furthermore, DNA damage and apoptosis were increseaed in chondrocytes treated with T-2 toxin (all p < 0.0001), but were decreased after selenium treatment (p < 0.0001, p = 0.01). Decreased mRNA level and increased methylation of MGMT were found in T-2 toxin group (p = 0.005, p = 0.002), while selenium reversed it (p = 0.02, p = 0.004). CONCLUSIONS MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which providing a therapeutic target for KBD.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|