1
|
Yang N, Yu T, Zheng B, Sun W, Li Y, Zhang W, Chen Y, Yuan L, Wang XJ, Wang J, Yang F. POSTN promotes the progression of NSCLC via regulating TNFAIP6 expression. Biochem Biophys Res Commun 2024; 736:150891. [PMID: 39471683 DOI: 10.1016/j.bbrc.2024.150891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Aberrant upregulation of Periostin (POSTN) expression has been implicated in various disease-related pathological cascades, notably inflammatory responses, fibrotic processes and tumor progression, including non-small cell lung cancer (NSCLC). The present study aimed to elucidate the functional role and underlying mechanisms of POSTN in NSCLC. Immunohistochemical and Western blot analysis consistently revealed elevated POSTN levels in NSCLC tissues and cell lines. POSTN expression negatively correlated with patient prognosis. Functional experiments utilizing POSTN-targeting siRNAs demonstrated a significant suppression of NSCLC cell proliferation, epithelial-to-mesenchymal transition (EMT), migration and invasion, whereas POSTN overexpression via plasmid transfection enhanced these oncogenic properties. Mechanistically, RNA sequencing analysis and subsequent validation studies revealed that POSTN positively modulates the transcriptional expression of tumor necrosis factor alpha-induced protein 6 (TNFAIP6) in NSCLC. Notably, a positive correlation was observed between POSTN and TNFAIP6 expression levels, and their overexpression positively correlated with NSCLC progression. Furthermore, TNFAIP6 overexpression rescued the inhibitory effects of POSTN knockdown on NSCLC malignant phenotypes. Collectively, our findings indicate that POSTN promotes NSCLC malignancy through TNFAIP6 upregulation, positioning POSTN as a promising biomarker and potential therapeutic target for NSCLC prognosis and treatment strategies in clinical settings.
Collapse
Affiliation(s)
- Nani Yang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Tianqing Yu
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Beiyao Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Wentao Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Xue Jun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Junbin Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, Anhui, PR China.
| | - Fen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| |
Collapse
|
2
|
Wang J, Lin F, Zhou Y, Cong Y, Yang S, Wang S, Guan X. Chemopreventive effect of modified zeng-sheng-ping on oral squamous cell carcinoma by regulating tumor associated macrophages through targeting tnf alpha induced protein 6. BMC Complement Med Ther 2024; 24:287. [PMID: 39068492 PMCID: PMC11283705 DOI: 10.1186/s12906-024-04593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck. Zeng-Sheng-Ping, composed of Sophora tonkinensis Gagnep., Bistorta officinalis Delarbre, Sonchus arvensis L., Prunella vulgaris L., Dioscorea bulbifera L., and Dictamnus dasycarpus Turcz., was regarded as an anti-cancer drug with significant clinical efficacy, but was discontinued due to liver toxicity. Our research group developed a modified Zeng-Sheng-Ping (ZSP-M) based on original Zeng-Sheng-Ping that exhibited high efficiency and low toxicity in preliminary investigations, although its pharmacodynamic mechanism is still unclear. Here, we aimed to elucidate the pharmacodynamic material basis of ZSP-M and investigate its chemopreventive effect on OSCC by modulating tumor associated macrophages (TAMs). METHODS Components of ZSP-M were characterized using ultra-performance liquid chromatography-mass spectrometry. Chemopreventive effect induced by ZSP-M against experimental oral cancer was investigated using the 4-nitroquinoline N-oxide precancerous lesion mouse model. RNA sequencing analysis was used to gain a global transcriptional view of the effect of ZSP-M treatment. A cell co-culture model was used to study the targeted effect of ZSP-M on TAMs and the biological properties of OSCC cells and to detect changes in TAM phenotypes. The binding of ZSP-M active compounds to TNF alpha induced protein 6 (TNFAIP6) protein was analyzed by molecular docking and dynamic simulation. RESULTS Forty main components of ZSP-M were identified, the most abundant of which were flavonoids. ZSP-M inhibited the degree of epithelial dysplasia in precancerous lesions by inhibiting the expression of the TNFAIP6 and CD163 proteins in the precancerous lesions of the tongue. ZSP-M inhibited proliferation, colony formation, migration and invasion of SCC7 cells by targeting TAMs. ZSP-M reduced the expression of CD163+ cells, inhibited the expression of TNFAIP6 protein, Arg1 mRNA and Il10 mRNA in TAMs, and reduced IL-10 cytokine release in the co-culture environment. This effect was maintained after the addition of recombinant TNFAIP6 protein. Computer simulations showed that trifolirhizin and maackiain are well-connected to TNFAIP6. CONCLUSIONS ZSP-M counteracts the immunosuppressive action of TAMs by specific targeting of TNFAIP6, thereby exerting chemopreventive activity of OSCC.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Feiran Lin
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yongxiang Zhou
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuyi Cong
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Sen Yang
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Sujuan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaobing Guan
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
3
|
Lin MS, Jo SY, Luebeck J, Chang HY, Wu S, Mischel PS, Bafna V. Transcriptional immune suppression and up-regulation of double-stranded DNA damage and repair repertoires in ecDNA-containing tumors. eLife 2024; 12:RP88895. [PMID: 38896472 PMCID: PMC11186631 DOI: 10.7554/elife.88895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.
Collapse
Affiliation(s)
- Miin S Lin
- Bioinformatics and Systems Biology Graduate Program, University of California, San DiegoLa JollaUnited States
| | - Se-Young Jo
- Department of Biomedical Systems Informatics and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California, San DiegoLa JollaUnited States
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford UniversityStanfordUnited States
- Department of Genetics, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Sihan Wu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Paul S Mischel
- Sarafan Chemistry, Engineering, and Medicine for Human Health (Sarafan ChEM-H), Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San DiegoLa JollaUnited States
- Halıcıoğlu Data Science Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
4
|
Erich SA, Teske E. One Health: Therapies Targeting Genetic Variants in Human and Canine Histiocytic and Dendritic Cell Sarcomas. Vet Comp Oncol 2024. [PMID: 38867335 DOI: 10.1111/vco.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
The precise cause of HS/DCS is still unknown. The relatively low incidence in humans urges for an animal model with a high incidence to accelerate knowledge about genetics and optimal treatment of HS/DCS. Namely, until now, the therapies targeting genetic variants are still more experimental and sparsely used, while consensus is missing. In addition, the literature about variants and possible mutation-targeted therapies in humans and dogs consists mainly of case reports scattered throughout the literature. Therefore, an overview is provided of all currently known genetic variants in humans and dogs with HS/DCS and its subtypes, their possible mutation-targeted therapies, their efficacy, and a contemplation about the future. Several genetic variants have already been discovered in HS/DCS, of which many are shared between canine and human HS/DCS, but unique variants exist as well. Unfortunately, none of these already found variants seem to be specifically causal for HS/DCS, and the puzzle of its landscape of genetic variation is far from complete. The use of mutation-targeted therapies, including MAPK-/MEK-inhibitors and the future use of PTPN11-, CDK4/6- and PD-1-inhibitors, seems to be promising for these specific variants, but clearly, clinical trials are needed to determine optimal inhibitors and standardised protocols for all variants. It can be concluded that molecular analysis for variants and subsequent mutation-targeted therapy are an essential addition to cancer diagnostics and therapy. A joint effort of humans and dogs in research is urgently needed and will undoubtedly increase knowledge and survival of this devastating disease in dogs and humans.
Collapse
Affiliation(s)
- Suzanne Agnes Erich
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik Teske
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Duan K, Fang K, Sui C. TFAIP6 facilitates hepatocellular carcinoma cell glycolysis through upregulating c-myc/PKM2 axis. Heliyon 2024; 10:e30959. [PMID: 38813227 PMCID: PMC11133704 DOI: 10.1016/j.heliyon.2024.e30959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent liver cancer. Despite of the improvement of therapies, the durable response rate and survival benefit are still limited for HCC patients. It's urgent to clarify the molecular mechanisms and find therapeutic strategies to improve the clinical outcome. TNFα-stimulated gene-6 (TNFAIP6) plays a critical role in the prognosis of various tumors, but its roles in HCC are still unclear. Methods Quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) analysis were employed to evaluate the clinical relevance of TNFAIP6 expressions in HCC patients. Cell counting kit-8 (CCK-8), Edu assay, and transwell assay were performed to evaluate the malignancy of HCC cells. Glucose uptake, lactate production, ATP production, extracellular acidification rate (ECAR) by Seahorse XF analyzer were employed to evaluate the role of TNFAIP6 in the regulation of aerobic glycolysis. The expressions of key proteins involved in glycolysis were examined by Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) were used for protein-protein interactions or protein-RNA interactions respectively. Knockdown and overexpression of TNFAIP6 in HCC cells were employed for analyzing the functions of TNFAIP6 in HCC. Results TNFAIP6 was significantly upregulated in HCC and predicted a poor clinical prognosis. Knockdown of TNFAIP6 inhibited in vitro cell proliferation, invasion, migration, as well as glycolysis in HCC cells. Mechanistically, we clarified that TNFAIP6 interacted with heterogeneous nuclear ribonucleoprotein C (HNRNPC), stabilized c-Myc mRNA and upregulated pyruvate kinase M2 (PKM2) to promote glycolysis. Conclusions Our study reveals a molecular mechanism by which TNFAIP6 promotes aerobic glycolysis, which is beneficial for malignance of HCC and provides a potential clinical therapy for disease management.
Collapse
Affiliation(s)
- Kecai Duan
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Kunpeng Fang
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Chengjun Sui
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| |
Collapse
|
6
|
Kang J, Lee JH, Cha H, An J, Kwon J, Lee S, Kim S, Baykan MY, Kim SY, An D, Kwon AY, An HJ, Lee SH, Choi JK, Park JE. Systematic dissection of tumor-normal single-cell ecosystems across a thousand tumors of 30 cancer types. Nat Commun 2024; 15:4067. [PMID: 38744958 PMCID: PMC11094150 DOI: 10.1038/s41467-024-48310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joonha Kwon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Division of Cancer Data Science, National Cancer Center, Bioinformatics Branch, Goyang, Republic of Korea
| | - Seongwoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mert Yakup Baykan
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So Yeon Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dohyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Chen H, Wu Y, Jiang Y, Chen Z, Zheng T. DKC1 aggravates gastric cancer cell migration and invasion through up-regulating the expression of TNFAIP6. Funct Integr Genomics 2024; 24:38. [PMID: 38376551 PMCID: PMC10879254 DOI: 10.1007/s10142-024-01313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Gastric cancer (GC) is one hackneyed malignancy tumor accompanied by high death rate. DKC1 has been discovered to serve as a facilitator in several cancers. Additionally, it was discovered from one study that DKC1 displayed higher expression in GC tissues than in the normal tissues. Nevertheless, its role and regulatory mechanism in GC is yet to be illustrated. In this study, it was proved that DKC1 expression was upregulated in GC tissues through GEPIA and UALCAN databases. Moreover, we discovered that DKC1 exhibited higher expression in GC cells. Functional experiments testified that DKC1 accelerated cell proliferation, migration, and invasion in GC. Further investigation disclosed that the weakened cell proliferation, migration, and invasion stimulated by DKC1 knockdown can be reversed after TNFAIP6 overexpression. Lastly, through in vivo experiments, it was demonstrated that DKC1 strengthened tumor growth. In conclusion, our work uncovered that DKC1 aggravated GC cell migration and invasion through upregulating the expression of TNFAIP6. This discovery might highlight the function of DKC1 in GC treatment.
Collapse
Affiliation(s)
- Huihua Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Yibo Wu
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China.
| | - Yancheng Jiang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Zixuan Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| |
Collapse
|
8
|
Liu R, Zhu G, Sun Y, Li M, Hu Z, Cao P, Li X, Song Z, Chen J. Neutrophil infiltration associated genes on the prognosis and tumor immune microenvironment of lung adenocarcinoma. Front Immunol 2023; 14:1304529. [PMID: 38204755 PMCID: PMC10777728 DOI: 10.3389/fimmu.2023.1304529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The neutrophils exhibit both anti-tumor and pro-tumor effects in cancers. The correlation between neutrophils and tumor development in lung adenocarcinoma (LUAD) is still uncertain, possibly due to a lack of specific neutrophil infiltration evaluation methods. In this study, we identified 30 hub genes that were significantly associated with neutrophil infiltration in LUAD through data mining, survival analysis, and multiple tumor-infiltrating immune cells (TICs) analysis, including TIMER, CIBERSORT, QUANTISEQ, XCELL, and MCPCOUNTER. Consensus clustering analysis showed that these 30 hub genes were correlated with clinical features in LUAD. We further developed a neutrophil scoring system based on these hub genes. The neutrophil score was significantly correlated with prognosis and tumor immune microenvironment (TIME) in LUAD. It was also positively associated with PD-L1 expression and negatively associated with tumor mutational burden (TMB). When combined with the neutrophil score, the predictive capacity of PD-L1 and TMB for prognosis was significantly improved. Thus, the 30 hub genes might play an essential role in the interaction of neutrophils and LUAD, and the neutrophil scoring system might effectually assess the infiltration of neutrophils. Furthermore, we verified the expression of these 30 genes in the LUAD tumor tissues collected from our department. We further found that overexpressed TNFAIP6 and TLR6 and downregulated P2RY13, SCARF1, DPEP2, PRAM1, CYP27A1, CFP, GPX3, and NCF1 in LUAD tissue might be potentially associated with neutrophils pro-tumor effects. The following in vitro experiments demonstrated that TNFAIP6 and TLR6 were significantly overexpressed, and P2RY13 and CYP27A1 were significantly downregulated in LUAD cell lines, compared to BEAS-2B cells. Knocking down TNFAIP6 in A549 and PC9 resulted in the upregulation of FAS, CCL3, and ICAM-1, and the downregulation of CCL2, CXCR4, and VEGF-A in neutrophils when co-culturing with the conditioned medium (CM) from LUAD cells. Knocking down TNFAIP6 in LUAD also led to an elevated early apoptosis rate of neutrophils. Therefore, overexpressed TNFAIP6 in LUAD cancer cells might lead to neutrophils "N2" polarization, which exhibited pro-tumor effects. Further research based on the genes identified in this pilot study might shed light on neutrophils' effects on LUAD in the future.
Collapse
Affiliation(s)
- Renwang Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonglin Sun
- Gynecology and Obstetrics Department, Tianjin Third Central Hospital, Tianjin, China
| | - Mingbiao Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zixuan Hu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumour Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Li Y, Tang M, Dang W, Zhu S, Wang Y. Identification of disulfidptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:13995-14014. [PMID: 37543978 DOI: 10.1007/s00432-023-05211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer-related deaths, which imposes a significant societal burden. Regular screening and emerging molecular tumor markers have important implications for detecting the progression and development of colorectal cancer. Disulfidptosis is a newly defined type of programmed cell death triggered by abnormal accumulation of disulfide compounds in cells that stimulate disulfide stress. Currently, there is no relevant discussion on this mechanism and colorectal cancer. METHODS We classified the disulfidptosis-related subtypes of colorectal cancer using bioinformatics methods. Through secondary clustering of differentially expressed genes between subtypes, we identified characteristic genes of the disulfidptosis subtype, constructed a prognostic model, and searched for potential biomarkers through clinical validation. RESULTS Using disulfidptosis-related genes collected from the literature, we classified colorectal cancer patients from public databases into three subtypes. The differentially expressed genes between subtypes were clustered into three gene subtypes, and eight characteristic genes were screened to construct a prognostic model. CONCLUSION The disulfidptosis mechanism has important value in the classification of colorectal cancer patients, and characteristic genes selected based on this mechanism can serve as a new potential biological marker for colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengyao Tang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Dang
- The First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| | - Yunpeng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| |
Collapse
|
10
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Baeza-Kallee N, Bergès R, Hein V, Cabaret S, Garcia J, Gros A, Tabouret E, Tchoghandjian A, Colin C, Figarella-Branger D. Deciphering the Action of Neuraminidase in Glioblastoma Models. Int J Mol Sci 2023; 24:11645. [PMID: 37511403 PMCID: PMC10380381 DOI: 10.3390/ijms241411645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) contains cancer stem cells (CSC) that are resistant to treatment. GBM CSC expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity and tumorigenesis of GBM CSC. Our aim was to characterize the resulting effects of neuraminidase that removes A2B5 in order to target GBM CSC. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3 and GBM CSC lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM CSC lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM CSC lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.
Collapse
Affiliation(s)
| | - Raphaël Bergès
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Victoria Hein
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Stéphanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, InstitutAgro, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jeremy Garcia
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Abigaëlle Gros
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, 13005 Marseille, France
| | - Emeline Tabouret
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
- APHM, CHU Timone, Service de Neurooncologie, 13005 Marseille, France
| | | | - Carole Colin
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | |
Collapse
|
12
|
Wu M, Hao S, Wang X, Su S, Du S, Zhou S, Yang R, Du H. A pyroptosis-related gene signature that predicts immune infiltration and prognosis in colon cancer. Front Oncol 2023; 13:1173181. [PMID: 37503314 PMCID: PMC10369052 DOI: 10.3389/fonc.2023.1173181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Colon cancer (CC) is a highly heterogeneous malignancy associated with high morbidity and mortality. Pyroptosis is a type of programmed cell death characterized by an inflammatory response that can affect the tumor immune microenvironment and has potential prognostic and therapeutic value. The aim of this study was to evaluate the association between pyroptosis-related gene (PRG) expression and CC. Methods Based on the expression profiles of PRGs, we classified CC samples from The Cancer Gene Atlas and Gene Expression Omnibus databases into different clusters by unsupervised clustering analysis. The best prognostic signature was screened and established using least absolute shrinkage and selection operator (LASSO) and multivariate COX regression analyses. Subsequently, a nomogram was established based on multivariate COX regression analysis. Next, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential molecular mechanisms between the high- and low-risk groups and to explore the differences in clinicopathological characteristics, gene mutation characteristics, abundance of infiltrating immune cells, and immune microenvironment between the two groups. We also evaluated the association between common immune checkpoints and drug sensitivity using risk scores. The immunohistochemistry staining was utilized to confirm the expression of the selected genes in the prognostic model in CC. Results The 1163 CC samples were divided into two clusters (clusters A and B) based on the expression profiles of the 33 PRGs. Genes with prognostic value were screened from the DEGs between the two clusters, and an eight PRGs prognostic model was constructed. GSEA and GSVA of the high- and low-risk groups revealed that they were mainly enriched in inflammatory response-related pathways. Compared to those in the low-risk group, patients in the high-risk group had worse overall survival, an immunosuppressive microenvironment, and worse sensitivity to immunotherapy and drug treatment. Conclusion Our findings provide a foundation for future research targeting pyroptosis and new insights into prognosis and immunotherapy from the perspective of pyroptosis in CC.
Collapse
Affiliation(s)
- Mingjian Wu
- Department of Gastrointestinal Surgery, Panyu Maternal and Child Care Service Centre of Guangzhou (He Xian Memorial Affiliated Hospital of Southern Medical University), Guangzhou, China
| | - Shuai Hao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxiang Wang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Zhanjiang, Guangdong, China
| | - Shuguang Su
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou (He Xian Memorial Affiliated Hospital of Southern Medical University), Guangzhou, China
| | - Siyuan Du
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou (He Xian Memorial Affiliated Hospital of Southern Medical University), Guangzhou, China
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hanpeng Du
- Department of Gastrointestinal Surgery, Panyu Maternal and Child Care Service Centre of Guangzhou (He Xian Memorial Affiliated Hospital of Southern Medical University), Guangzhou, China
| |
Collapse
|
13
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
14
|
El Filaly H, Desterke C, Outlioua A, Badre W, Rabhi M, Karkouri M, Riyad M, Khalil A, Arnoult D, Akarid K. CXCL-8 as a signature of severe Helicobacter pylori infection and a stimulator of stomach region-dependent immune response. Clin Immunol 2023; 252:109648. [PMID: 37209806 DOI: 10.1016/j.clim.2023.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Helicobacter pylori infection is involved in development of diverse gastro-pathologies. Our aim is to investigate potential signature of cytokines-chemokine levels (IL-17A, IL-1β, and CXCL-8) in H. pylori-infected patients and their impact on immune response in both corpus and antrum. Multivariate level analysis with machine learning model were carried out using cytokines/chemokine levels of infected Moroccan patients. In addition, Geo dataset was used to run enrichment analysis following CXCL-8 upregulation. Our analysis showed that combination of cytokines-chemokine levels allowed prediction of positive H. pylori density score with <5% of miss-classification error, with fundus CXCL-8 being the most important variable for this discrimination. Furthermore, CXCL-8 dependent expression profile was mainly associated to IL6/JAK/STAT3 signaling in the antrum, interferons alpha and gamma responses in the corpus and commonly induced transcriptional /proliferative activities. To conclude, CXCL-8 level might be a signature of Moroccan H. pylori-infected patients and an inducer of regional-dependent immune response at the gastric level. Larger trials must be carried out to validate the relevance of these results for diverse populations.
Collapse
Affiliation(s)
- Hajar El Filaly
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris-Saclay, Villejuif, France; Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Outlioua
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Badre
- Gastroenterology Department, CHU IbnRochd, Casablanca, Morocco
| | - Moncef Rabhi
- Diagnostic Center, Hôpital Militaire d'Instruction Mohammed V, Mohammed V University, Rabat, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, CHU Ibn Rochd/Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France; Université Paris-Saclay, Paris, France
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
15
|
Cai X, Chen Z, Huang C, Shen J, Zeng W, Feng S, Liu Y, Li S, Chen M. Development of a novel glycolysis-related genes signature for isocitrate dehydrogenase 1-associated glioblastoma multiforme. Front Immunol 2022; 13:950917. [DOI: 10.3389/fimmu.2022.950917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe significant difference in prognosis between IDH1 wild-type and IDH1 mutant glioblastoma multiforme (GBM) may be attributed to their metabolic discrepancies. Hence, we try to construct a prognostic signature based on glycolysis-related genes (GRGs) for IDH1-associated GBM and further investigate its relationships with immunity.MethodsDifferentially expressed GRGs between IDH1 wild-type and IDH1 mutant GBM were screened based on the TCGA database and the Molecular Signature Database (MSigDB). Consensus Cluster Plus analysis and KEGG pathway analyses were used to establish a new GRGs set. WGCNA, univariate Cox, and LASSO regression analyses were then performed to construct the prognostic signature. Then, we evaluated association of the prognostic signature with patients’ survival, clinical characteristics, tumor immunogenicity, immune infiltration, and validated one hub gene.Results956 differentially expressed genes (DEGs) between IDH1 wild-type and mutant GBM were screened out and six key prognostically related GRGs were rigorously selected to construct a prognostic signature. Further evaluation and validation showed that the signature independently predicted GBM patients’ prognosis with moderate accuracy. In addition, the prognostic signature was also significantly correlated with clinical traits (sex and MGMT promoter status), tumor immunogenicity (mRNAsi, EREG-mRNAsi and HRD-TAI), and immune infiltration (stemness index, immune cells infiltration, immune score, and gene mutation). Among six key prognostically related GRGs, CLEC5A was selected and validated to potentially play oncogenic roles in GBM.ConclusionConstruction of GRGs prognostic signature and identification of close correlation between the signature and immune landscape would suggest its potential applicability in immunotherapy of GBM in the future.
Collapse
|
16
|
TNFAIP6 Promotes Gastric Carcinoma Cell Invasion via Upregulating PTX3 and Activating the Wnt/ β-Catenin Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5697034. [PMID: 35854776 PMCID: PMC9279067 DOI: 10.1155/2022/5697034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Tumor metastasis is a fundamental cause of the poor prognosis of gastric carcinoma (GC). In order to study the problems affecting metastasis and recurrence of gastric cancer, the paper expose that TNF alpha induced protein 6 (TNFAIP6) is aberrantly overexpressed in GC, and patients with high-TNFAIP6 levels exhibited inferior overall survival. Mechanistically, overexpression of TNFAIP6 raised β-catenin ectopic nuclear distribution and activated the Wnt/β-catenin signal pathway. The experimental results show that TNFAIP6 facilitates the aggressive potential of GC cells through modulating PTX3 expression.
Collapse
|
17
|
Han Y, Ding Z, Chen B, Liu Y, Liu Y. A Novel Inflammatory Response–Related Gene Signature Improves High-Risk Survival Prediction in Patients With Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:767166. [PMID: 35480305 PMCID: PMC9035793 DOI: 10.3389/fgene.2022.767166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a highly prevalent and malignant tumor that is difficult to effectively prognosticate outcomes. Recent reports have suggested that inflammation is strongly related to tumor progression, and several biomarkers linked to inflammation have been demonstrated to be useful for making a prognosis. The goal of this research was to explore the relevance between the inflammatory-related genes and HNSCC prognosis. Methods: The clinical information and gene expression data of patients with HNSCC were acquired from publicly available data sources. A multigene prognostic signature model was constructed in The Cancer Genome Atlas and verified in the Gene Expression Omnibus database. According to the risk score calculated for each patient, they were divided into low- and high-risk groups based on the median. The Kaplan–Meier survival curve and receiver operating characteristic curve were applied to determine the prognostic value of the risk model. Further analysis identified the independent prognostic factors, and a prognostic nomogram was built. The relationship between tumor immune infiltration status and risk scores was investigated using Spearman correlation analysis. Finally, to confirm the expression of genes in HNSCC, quantitative real-time polymerase chain reaction (qRT-PCR) was performed. Results: A prognostic model consisting of 14 inflammatory-related genes was constructed. The samples with a high risk had an apparently shorter overall survival than those with a low risk. Independent prognostic analysis found that risk scores were a separate prognostic factor in HNSCC patients. Immune infiltration analysis suggested that the abundance of B cells, CD8 T cells, M2 macrophages, myeloid dendritic cells, and monocytes in the low-risk group was higher, while that of M0, M1 macrophages, and resting NK cells was obviously higher in the high-risk group. The risk scores were related to chemotherapeutic sensitivity and the expression of several immune checkpoint genes. Moreover, CCL22 and IL10 were significantly higher in HNSCC tissues, as determined by qRT-PCR. Conclusion: Taken together, we constructed a novel inflammatory response–related gene signature, which may be used to estimate outcomes for patients with HNSCC and may be developed into a powerful tool for forecasting the efficacy of immunotherapeutic and chemotherapeutic drugs for HNSCC.
Collapse
Affiliation(s)
- Yanxun Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Medical University, Hefei, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yehai Liu,
| |
Collapse
|
18
|
PTPN6-EGFR Protein Complex: A Novel Target for Colon Cancer Metastasis. JOURNAL OF ONCOLOGY 2022; 2022:7391069. [PMID: 35186080 PMCID: PMC8856819 DOI: 10.1155/2022/7391069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 01/04/2023]
Abstract
This study investigates the expression of nonreceptor protein tyrosine phosphatase 6 (PTPN6) gene in different colon cancer cells and its effect on malignant biological behavior. The expression level of PTPN6 mRNA in different colon cancer cell lines was detected by qPCR. CCK-8, clone formation assay, scratch assay, and transwell assay were used to detect the effect of knockdown or overexpression of the PTPN6 gene on the malignant biological behavior of colon cancer cells. CO-IP assay was used to detect the interaction protein of PTPN6. PTPN6 was highly expressed in colorectal cancer tissues. High expression of PTPN6 is associated with poor prognosis in patients with colon cancer. PtPN6 knockdown inhibited the proliferation, invasion, migration, and clonogenesis of colorectal cancer LOVO and SW480 cells. At the same time, the knockdown of PTPN6 inhibited the EMT process in colorectal cancer. CO-IP results showed that PTPN6 had a protein-protein interaction with EGFR. Overexpression of EGFR increased the carcinogenic effect of PTPN6. The high expression of the PTPN6 gene can promote the proliferation, migration, and invasion of colon cancer cells. PTPN6 can interact with EGFR. PTPN6-EGFR complex may be an important factor affecting the biological characteristics of colon cancer cells and a potential therapeutic target.
Collapse
|
19
|
Xie Z, Cai J, Sun W, Hua S, Wang X, Li A, Jiang J. Development and Validation of Prognostic Model in Transitional Bladder Cancer Based on Inflammatory Response-Associated Genes. Front Oncol 2021; 11:740985. [PMID: 34692520 PMCID: PMC8529162 DOI: 10.3389/fonc.2021.740985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023] Open
Abstract
Background Bladder cancer is a common malignant type in the world, and over 90% are transitional cell carcinoma. While the impact of inflammatory response on cancer progression has been reported, the role of inflammatory response-associated genes (IRAGs) in transitional bladder cancer still needs to be understood. Methods In this study, IRAGs were download from Molecular Signature Database (MSigDB). The transcriptional expression and matched clinicopathological data were separately obtained from public databases. The TCGA-BLCA cohort was used to identify the differentially expressed IRAGs, and prognostic IRAGs were filtrated by univariate survival analysis. The intersection between them was displayed by Venn diagram. Based on least absolute shrinkage and selection operator (LASSO) regression analysis method, the TCGA-BLCA cohort was used to construct a risk signature. Survival analysis was conducted to calculate the overall survival (OS) in TCGA and GSE13507 cohort between two groups. We then conducted univariate and multivariate survival analyses to identify independently significant indicators for prognosis. Relationships between the risk scores and age, grade, stage, immune cell infiltration, immune function, and drug sensitivity were demonstrated by correlation analysis. The expression level of prognostic genes in vivo and in vitro were determined by qRT-PCR assay. Results Comparing with normal tissues, there were 49 differentially expressed IRAGs in cancer tissues, and 12 of them were markedly related to the prognosis in TCGA cohort for transitional bladder cancer patients. Based on LASSO regression analysis, a risk model consists of 10 IRAGs was established. Comparing with high-risk groups, survival analysis showed that patients in low-risk groups were more likely to have a better survival time in TCGA and GSE13507 cohorts. Besides, the accuracy of the model in predicting prognosis is acceptable, which is demonstrated by receiver operating characteristic curve (ROC) analysis. Age, stage, and risk scores variables were identified as the independently significant indicators for survival in transitional bladder cancer. Correlation analysis represented that the risk score was identified to be significantly related to the above variables except gender variable. Moreover, the expression level of prognostic genes in vivo and in vitro was markedly upregulated for transitional bladder cancer. Conclusions A novel model based on the 10 IRAGs that can be used to predict survival time for transitional bladder cancer. In addition, this study may provide treatment strategies according to the drug sensitivity in the future.
Collapse
Affiliation(s)
- Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenlan Sun
- Department of Geriatrics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anguo Li
- Department of Urology, The Fifth Peoples Hospital of Zunyi, Guizhou, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Broholm M, Degett TH, Furbo S, Fiehn AMK, Bulut M, Litman T, Eriksen JO, Troelsen JT, Gjerdrum LMR, Gögenur I. Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Ann Surg Oncol 2021; 28:8519-8531. [PMID: 34467497 DOI: 10.1245/s10434-021-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Colonic stent is recommended as a bridge to elective surgery for malignant obstruction to improve short-term clinical outcomes for patients with colorectal cancer. However, since the oncological outcomes remain controversial, this study aimed to investigate the impact of self-expandable metallic stent (SEMS) on the tumor microenvironment. METHODS Patients treated with colonic stent as a bridge to surgery from 2010 to 2015 were identified from hospital records. Tumor biopsies and resected tumor samples of the eligible patients were retrieved retrospectively. Gene expression analysis was performed using the NanoString nCounter PanCancer IO 360 gene expression panel. RESULTS Of the 164 patients identified, this study included 21 who underwent colonic stent placement as a bridge to elective surgery. Gene expression analysis revealed 82 differentially expressed genes between pre- and post-intervention specimens, of which 72 were upregulated and 10 downregulated. Among the significantly upregulated genes, 46 are known to have protumor functions, of which 26 are specifically known to induce tumorigenic mechanisms such as proliferation, migration, invasion, angiogenesis, and inflammation. In addition, ten differentially expressed genes were identified that are known to promote antitumor functions. CONCLUSION SEMS induces gene expressional changes in the tumor microenvironment that are associated with tumor progression in colorectal cancer and may potentiate a more aggressive phenotype. Future studies are warranted to establish optimal timing of surgery after SEMS insertion in patients with obstructive colorectal cancer.
Collapse
Affiliation(s)
- Malene Broholm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark. .,Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Thea Helene Degett
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sara Furbo
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Anne-Marie Kanstrup Fiehn
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mustafa Bulut
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Identification of tumor microenvironment-related prognostic genes in colorectal cancer based on bioinformatic methods. Sci Rep 2021; 11:15040. [PMID: 34294834 PMCID: PMC8298640 DOI: 10.1038/s41598-021-94541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) ranks fourth among the deadliest cancers globally, and the progression is highly affected by the tumor microenvironment (TME). This study explores the relationship between TME and colorectal cancer prognosis and identifies prognostic genes related to the CRC microenvironment. We collected the gene expression data from The Cancer Genome Atlas (TCGA) and calculated the scores of stromal/immune cells and their relations to clinical outcomes in colorectal cancer by the ESTIMATE algorithm. Lower immune scores were significantly related to the malignant progression of CRC (metastasis, p = 0.001). We screened 292 differentially expressed genes (DEGs) by dividing CRC cases into high and low stromal/immune score groups. Functional enrichment analyses and protein-protein interaction (PPI) networks illustrated that these DEGs were closely involved in immune response, cytokine-cytokine receptor interaction, and chemokine signaling pathway. Six DEGs (FABP4, MEOX2, MMP12, ERMN, TNFAIP6, and CHST11) with prognostic value were identified by survival analysis and validated in two independent cohorts (GSE17538 and GSE161158). The six DEGs were significantly related to immune cell infiltration levels based on the Tumor Immune Estimation Resource (TIMER). The results might contribute to discovering new diagnostic and prognostic biomarkers and new treatment targets for colorectal cancer.
Collapse
|
22
|
Li X, Feng J, Sun Y, Li X. An Exploration of the Tumor Microenvironment Identified a Novel Five-Gene Model for Predicting Outcomes in Bladder Cancer. Front Oncol 2021; 11:642527. [PMID: 34012914 PMCID: PMC8126988 DOI: 10.3389/fonc.2021.642527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the top ten most common cancer types globally, accounting for approximately 7% of all male malignancies. In the last few decades, cancer research has focused on identifying oncogenes and tumor suppressors. Recent studies have revealed that the interplay between tumor cells and the tumor microenvironment (TME) plays an important role in the initiation and development of cancer. However, the current knowledge regarding its effect on BC is scarce. This study aims to explore how the TME influences the development of BC. We focused on immune and stromal components, which represent the major components of TME. We found that the proportion of immune and stromal components within the TME was associated with the prognosis of BC. Furthermore, based on the scores of immune and stromal components, 811 TME-related differentially expressed genes were identified. Three subclasses with distinct biological features were divided based on these TME-genes. Finally, five prognostic genes were identified and used to develop a prognostic prediction model for BC patients based on TME-related genes. Additionally, we validated the prognostic value of the five-gene model using three independent cohorts. By further analyzing features based on the five-gene signature, higher CD8+ T cells, higher tumor mutational burden, and higher chemosensitivity were found in the low-risk group, which presented a better prognosis. In conclusion, our exploration comprehensively analyzed the TME and identified TME-related prognostic genes for BC, providing new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xinjie Li
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Jiahao Feng
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Xin Li
- School of Medicine, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
23
|
DNA methylation profiling reveals new potential subtype-specific gene markers for early-stage renal cell carcinoma in caucasian population. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|